

Generating computer forensic super-
timelines under Linux
A comprehensive guide for Windows-based disk images

R. Carbone
Certified Hacking Forensic Investigator (EC Council)
DRDC Valcartier

C. Bean
Certified Hacking Forensic Investigator (EC Council)

Defence R&D Canada – Valcartier
Technical Memorandum
DRDC Valcartier TM 2011-216
October 2011

Principal Author

Original signed by Richard Carbone

Richard Carbone

Programmer/Analyst

Approved by

Original signed by Guy Turcotte

Guy Turcotte

Head/System of Systems

Approved for release by

Original signed by Christian Carrier

Christian Carrier

Chief Scientist

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2011

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2011

DRDC Valcartier TM 2011-216 i

Abstract ……..

This technical memorandum examines the basics surrounding computer forensic filesystem
timelines and provides an enhanced approach to generating superior timelines for improved
filesystem analysis and contextual awareness. Timelines are improved by polling multiple
sources of information across the filesystem resulting in an approach that is surprisingly flexible
and customizable. The timeline is further enhanced by incorporating key time-based metadata
found across a disk image which, when taken as a whole, increases the forensic investigator’s
understanding.

Résumé ….....

Ce mémorandum technique examine les bases entourant la création d’un calendrier des
événements inforensiques des systèmes de fichier et fournit une approche améliorée pour générer
des calendriers supérieurs pour une analyse améliorée des systèmes de fichiers et un meilleur
éveil contextuel. Ces calendriers sont améliorés en sondant des sources multiples d’information à
travers le système de fichiers, ce qui résulte en une approche qui est étonnamment flexible et
configurable. Le calendrier est amélioré encore davantage par l’introduction des métadonnées
essentielles liées au temps qui se retrouvent un peu partout sur un disque et qui, lorsque prises en
compte globalement, augmentent la compréhension de l’enquêteur inforensique.

ii DRDC Valcartier TM 2011-216

This page intentionally left blank.

DRDC Valcartier TM 2011-216 iii

Executive summary

Generating computer forensic super-timelines under Linux: A
comprehensive guide for Windows-based disk images

Carbone, R., Bean, C.; DRDC Valcartier TM 2011-216; Defence R&D Canada –
Valcartier; October 2011.

Modern digital forensics relies on a multitude of software tools and investigative techniques in an
attempt to understand and piece together the actions taken by a suspect. Many pieces of relevant
information exist, including precious metadata. It is this metadata, specifically date/time related
metadata, which constitutes the main subject of this technical memorandum. Unfortunately, the
full utilization of said metadata is all too often left out from an investigation as only the basic
filesystem date/time metadata is actually used. Using additional metadata sources, as examined
in this technical memorandum, would further increase the confidence reliability of a digital
forensic timeline.

These timelines, while in use for many years now by investigators, are lacking in context and
depth. Far too many important additional sources of date/time-related metadata are left out from
the timeline, thereby limiting the investigator’s contextual understanding of events. By
increasing the scope and range of additional metadata and pushing it into the timeline, new
insights can be gained, particularly into user-related activities.

While these concepts are not new, they are not widely used today by investigators nor are they
implemented into current commercial digital forensic analysis tools and frameworks. Instead,
digital forensic timelines appear to have been ignored by the software industry. However, there
has been some resurgence of interest in timelines and the software tools at the forefront,
log2timeline and The Sleuth Kit, play a key role in the timeline generation approach described
herein.

Specifically, the open source tool log2timeline, in combination with custom shell scripts and short
C-based programs, will enable the reader to not only generate enhanced timelines from additional
sources of date/time-related metadata but allow for said generation in a more automatable
fashion. This technical memorandum therefore provides a detailed description of the authors’
approach to generating enhanced timelines in the hopes of aiding the digital forensic community
to adopt improved methodologies.

This work was carried out over a period of two months as part of the Live Computer Forensics
project, an agreement between DRDC Valcartier and the RCMP (SRE-09-015, 31XF20). The
results of this project will be of great interest to the Canadian Forces Network Operation
(CFNOC) in their mission of securing DND networks and investigating computer incidents.

iv DRDC Valcartier TM 2011-216

Sommaire

Generating computer forensic super-timelines under Linux: A
comprehensive guide for Windows-based disk images

Carbone, R., Bean, C. ; DRDC Valcartier TM 2011-216 ; R & D pour la défense
Canada – Valcartier; octobre 2011.

L’inforensique moderne repose sur une multitude d’outils logiciels et de techniques d’enquête
dans le but de comprendre et de réunir les actes commis par un suspect. Beaucoup d’information
pertinente existe, incluant de précieuses métadonnées. Ce sont ces métadonnées, partiellement
celles liées à la date et à l’heure, qui constituent le sujet principal de ce mémorandum technique.
Malheureusement, la pleine utilisation de ces métadonnées est trop souvent mise de côté dans une
enquête et seules les métadonnées de base du système de fichiers, liées à la date et à l’heure, sont
utilisées dans les faits. L’utilisation de sources de métadonnées additionnelles, telles
qu’examinées dans ce mémorandum technique, augmenterait le niveau de fiabilité envers un
calendrier des événements inforensiques.

Ces calendriers, pourtant utilisés depuis plusieurs années par les enquêteurs, manquent
d’information contextuelle et de profondeur. Beaucoup trop de métadonnées additionnelles
importantes liées à la date et à l’heure sont mise à l’écart du calendrier, ce qui limite la
compréhension contextuelle des événements pour l’enquêteur. En augmentant la portée et la
gamme des métadonnées additionnelles et en les incluant dans le calendrier des événements, de
nouvelles connaissances peuvent être acquises, particulièrement en ce qui a trait aux activités des
utilisateurs.

Bien que ces concepts ne soient pas nouveaux, ils sont peu utilisés par les enquêteurs et ils ne sont
pas implémentés dans les outils et cadres courants d’inforensique commerciaux. Les calendriers
des événements numériques semblent plutôt avoir été négligés par l’industrie logicielle. Malgré
tout, il semble y avoir eu un regain d’intérêt pour ces calendriers et les outils logiciel à l’avant-
garde, log2timeline et The Sleuth Kit, joue un rôle clé dans la production de calendriers des
événements décrits dans ce mémorandum.

Spécifiquement, l’outil en logiciel libre log2timeline, combiné avec des scripts de commandes
personnalisés et de petits programmes en C, permettra au lecteur non seulement de produire des
calendriers améliorés à partir de sources additionnelles de métadonnées liées à la date et à l’heure,
mais permettra aussi une meilleure automatisation de cette production. Ce mémorandum
technique fournit donc une description détaillée de l’approche des auteurs pour produire des
calendriers des événements plus détaillés dans l’espoir d’aider la communauté inforensique à
adopter des méthodes améliorées.

Ce travail a été accompli sur une période de deux mois dans le cadre du projet « Live Computer
Forensics », une entente entre RDDC Valcartier et la GRC (SRE-09-015, 31XF20). Les résultats
de ce projet seront d’un grand intérêt pour le Centre d'opérations des réseaux des Forces
canadiennes (CORFC) dans leur mission de protection des réseaux du MDN et d’investigation
des incidents informatiques.

DRDC Valcartier TM 2011-216 v

This page intentionally left blank.

vi DRDC Valcartier TM 2011-216

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary .. iii
Sommaire iv
Table of contents .. vi
List of tables .. x
Acknowledgements .. xi
Disclaimer xii
C source code and Bash shell script code disclosure licensing agreement xiii
Requirements and assumptions .. xiv
Software requirements ... xv
Reasons why the timescanner tool was not used .. xvi
1 Introduction ... 1

1.1 Objective ... 1
1.2 Context .. 1
1.3 Benefits of improved timeline generation ... 2
1.4 Notes .. 2

2 Background information ... 3
2.1 About digital timelines .. 3
2.2 Reasons for using open source software for timeline generation 4

2.2.1 Commercially used forensic analysis software background 4
2.2.2 The use of Linux .. 4
2.2.3 Use of The Sleuth Kit .. 6
2.2.4 Use of log2timeline .. 7
2.2.5 Linux capabilities ... 8

2.3 Why are digital timelines underutilized? ... 9
2.4 Timeline challenges ... 10
2.5 Brief remarks concerning the implementation of timeline generation 13
2.6 A short list and summary of available timeline generation software currently in

use .. 13
2.6.1 Encase .. 14
2.6.2 FTK .. 14
2.6.3 Ex-Tip .. 14
2.6.4 Log2timeline .. 14
2.6.5 NTI FileList Pro ... 14
2.6.6 The Sleuth Kit .. 15
2.6.7 Autopsy .. 15

DRDC Valcartier TM 2011-216 vii

2.6.8 PTK .. 15
2.6.9 Zeitline ... 15
2.6.10 AnalyzeMFT.py ... 15
2.6.11 Fiwalk .. 16
2.6.12 Mac-robber .. 16
2.6.13 Digital Forensic Framework .. 16
2.6.14 Grave-robber .. 16
2.6.15 NFILabs Aftertime ... 16
2.6.16 SIMILE Timeplot .. 17

3 Filesystem-specific details .. 18
3.1 Background ... 18
3.2 Topics excluded from the filesystem analysis ... 18

3.2.1 Specific filesystems ... 18
3.2.2 Extended attributes .. 19
3.2.3 A note about ACLs .. 19

3.3 About MAC times, their limitations and consequences .. 19
3.3.1 Background .. 19
3.3.2 MAC times under Linux and UNIX .. 20
3.3.3 MAC times under Windows .. 21

3.3.3.1 FAT-based MAC times .. 21
3.3.3.2 NTFS-based MAC times .. 21

3.3.4 Final thoughts .. 23
3.4 About file permissions ... 24

3.4.1 Background .. 24
3.4.2 A timeline-based representation of permissions .. 24
3.4.3 Windows filesystem permissions... 25

3.4.3.1 FAT filesystem permissions... 25
3.4.3.2 NTFS filesystem permissions .. 25

3.4.4 UNIX filesystem permissions .. 27
4 Timeline formats ... 29

4.1 Background ... 29
4.2 Examination of the various timeline formats .. 30

4.2.1 Preliminary timeline format ... 30
4.2.1.1 Bodyfile timeline format .. 30

4.2.2 Intermediate timeline formats .. 33
4.2.2.1 TLN timeline format .. 34
4.2.2.2 Mactime timeline format .. 34
4.2.2.3 Other potential timeline formats .. 37

4.2.3 Authors’ proposed enhanced Mactime timeline format for use as a final
timeline layout ... 38

4.2.3.1 Proposed timeline format specifics .. 38

viii DRDC Valcartier TM 2011-216

4.2.3.2 Example of enhanced Mactime timeline format 39
4.3 Reading and processing Mactime-based timeline output .. 40
4.4 A final point about UNIX data processing .. 42

5 Examining timeline-based sources of information ... 43
5.1 Background ... 43
5.2 Sources of date/time metadata ... 43

5.2.1 Sources available through log2timeline ... 43
5.2.2 Sources used and implemented in the proposed timeline extraction

framework .. 45
5.3 How the control script works .. 46
5.4 Sample output .. 47

5.4.1 Allocated filesystem objects .. 47
5.4.2 Deleted filesystem objects ... 48
5.4.3 Undeletable filesystem objects .. 49
5.4.4 Windows registry objects .. 50
5.4.5 Windows event logs ... 51
5.4.6 Windows prefetch files .. 52
5.4.7 Windows system restores .. 53
5.4.8 Windows shortcuts ... 54
5.4.9 Windows Internet Explorer history files .. 55
5.4.10 Firefox history files .. 56
5.4.11 Windows Setupapi logs ... 57
5.4.12 Flash cookies ... 58

6 Conclusion .. 60
References 63
Annex A About CDs, disc images formats and filesystem-based MAC times 69

A.1 Windows CD-ROM optical installation media vs. detected filesystem type and
size ... 69

A.2 Disc image format for various publicly available Linux, BSD and Solaris
distributions ... 69

A.3 MAC times for various filesystems given different actions taken against files 70
Annex B Shell scripts and C code .. 73

B.1 Shell script: timeline.sh ... 73
B.2 C programs source code .. 82

B.2.1 C program: file_name_type_line_parser.c .. 82
B.2.2 C program: find_eventlog_signature.c .. 84
B.2.3 C program: unixtime_to_systime.c ... 86

Bibliography .. 89
List of symbols/abbreviations/acronyms/initialisms ... 100
Glossary 104

DRDC Valcartier TM 2011-216 ix

x DRDC Valcartier TM 2011-216

List of tables

Table 1. Differentiating file type designation. .. 27

Table 2. Corresponding Windows optical installation media detected filesystem versus
approximate optical disc size. ... 69

Table 3. Disc image-based distribution with detected filesystem, operating system type and
disc image size. ... 69

Table 4. Mac Meaning by File System (reproduced from [17]). .. 70

Table 5. File modifications resulting in changes to the MFT date/time
$STANDARD_INFORMATION attribute (reproduced from [16]). 71

Table 6. File modifications resulting in changes to the MFT date/time $FILE_NAME
attribute (reproduced from [16]). .. 71

Table 7. File deletion MAC time changes for a given filesystem type (Source [28]). 71

Table 8. Directory-based MAC time changes upon sub-file deletion for a given filesystem
type (Source [28]). .. 72

DRDC Valcartier TM 2011-216 xi

Acknowledgements

The authors would like to thank Mr. Yves van Chestein for peer-reviewing this document and
providing many useful comments and insight in order to improve it and to Mr. Martin Salois for
translating select portions of this text.

xii DRDC Valcartier TM 2011-216

Disclaimer

The reader should neither construe nor interpret the work described herein by the authors as an
endorsement of the aforementioned techniques and capacities as suitable for any specific purpose,
construed, implied or otherwise.

Furthermore, the aforementioned authors absolve themselves in all ways conceivable with respect
to how the reader may use, interpret or construe this technical memorandum. The authors assume
absolutely no liability or responsibility, implied or explicit. Moreover, the onus is on the reader
to be properly equipped and knowledgeable in the application of digital forensics.

Finally, the authors, the Government of Canada, the Minister of National Defence (Canada), the
Department of National Defence (Canada) and Defence Research and Development Canada are
henceforth absolved of all wrongdoing, whether intentional, unintentional, construed or
misunderstood on the part of the reader. If the reader does not agree to these terms, then this
technical memorandum should be readily returned to the Department of National Defence
(Canada). Only if the reader agrees to these terms should he or she continue reading it beyond
this point. It is further assumed by all participants that the reader has read this Disclaimer and
assumes all responsibility for any repercussions which may result from the information and data
contained herein.

DRDC Valcartier TM 2011-216 xiii

C source code and Bash shell script code disclosure
licensing agreement

All source code included herein is hereby released to the community at large using a BSD-based
licensing agreement. The actual license by which all code is released to the public is as follows:

Copyright © 2011, Her Majesty the Queen in Right of Canada, as represented by
the Minister of National Defence.

C code and Bash shell scripts presented herein were written and coded by
Richard Carbone, Defence R&D Canada – Valcartier, 2011.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Re-distributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Re-distributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

Neither the name of the authors, Defence R&D Canada, or the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

xiv DRDC Valcartier TM 2011-216

Requirements and assumptions

It is assumed that the reader is altogether familiar with digital forensics and the various
techniques and methodologies associated therein. This technical memorandum is neither an
introduction to digital forensics or said techniques and methodologies. However, this technical
memorandum will endeavour to present sufficient technically-oriented background information so
that the reader can understand why additional sources of date/time-based metadata are required,
the consequences of timeline usage and generation and enable to him to modify the work
presented herein for his own specific needs.

The present technical memorandum examines only timeline generation for forensically acquired
disk images. Timeline generation from live systems is not examined herein.

All work presented herein has been carried out using a Linux-based operating system and it is
very likely that the reader’s success in recreating similar results using the presented techniques
and methodologies as they pertain to digital forensic timelines will require the use of such an
operating system.

The reader should be both familiar and comfortable with shell scripting as it pertains to the Linux
Bash shell. All shell scripts can of course be rewritten by the reader in another language
including but not limited Perl, Python, etc. All C code was compiled using GCC version 4.4.5
20101112 under Fedora Core 13 64-bit with kernel 2.6.34.7-63.fc13.x86_64 #1 SMP. All Bash
shell scripts were executed under Bash version 4.1.7(1)-release (x86_64-redhat-linux-gnu).

All Linux-based filesystem related experiments were conducted under Fedora Core 13 64-bit with
kernel 2.6.34.7-63.fc13.x86_64 #1 SMP.

DRDC Valcartier TM 2011-216 xv

Software requirements

This technical report runs entirely atop Linux and requires The Sleuth Kit. Although it is possible
to run the various programs including The Sleuth Kit, various Perl scripts and programs atop
Windows the authors have made no effort to do so and leave it to reader to attempt.

The reader will require a C compiler such as GCC to compile the various C programs included in
this report. The timeline control script was written to work atop Bash although it may run with
other UNIX or Linux command line interpreters. Perl must be installed in order to run
log2timeline and other scripts including their various dependencies which the reader must ensure
are present in order for log2timeline and the scripts to function correctly. Harlan Carvey’s Perl
regtime.pl tool is also required by the timeline control script (see Annex B.1 for more details) and
without it registry timeline extraction is not possible as log2timeline’s registry timeline extraction
capability is somewhat more limited.

Standard UNIX processing tools including sed, grep, tr, uniq, awk, etc are generally included
with most Linux distributions. If used under Windows, equivalents must be found and used.

xvi DRDC Valcartier TM 2011-216

Reasons why the timescanner tool was not used

When the authors began working on this technical memorandum in mid-2010 the timescanner tool was not
yet released. Then, nearing the end of June 2010 the tool was released with version 0.50 of log2timeline.
The tool did not work as anticipated and as such the authors continued with their work including their script
and C programs (see annexes B.1, B.2.1, B.2.2 and B.2.3) rather than concentrate on a semi-functional tool.

As of mid-2011 the timescanner tool was working well and using it no longer required the use of complex
or excessively long scripts, as was done for this work. However, in order for timescanner to work, many
diverse Perl libraries must be installed which is not necessarily an obvious task to accomplish, even for
experienced system administrators, as Perl library installations are at times known to be particular.

While the timescanner tool can be used to automatically find and extract date/time metadata using various
prebuilt configuration files, this does not in any way negate the usefulness of log2timeline. In fact, quite
the opposite is true. Although the investigator is often after efficient and automated means of extracting
evidence from disk images, an overreliance on automation has the potential to significantly handicap an
investigator. Specifically, when automation fails to work, a manual approach is required and this work,
along with the technical background it provides and the variously aforementioned script and C programs
fully address this.

By the time the timescanner tool became stable enough for operational use the vast majority of this work
had already been completed and altogether abandoning it would mean that the comprehensive information
it contains would not be readily shared with the digital forensics community. What’s more, the ability to
customise output, as is done in this work using the author-provided prototype control script, becomes an
afterthought when using timescanner rather than having a highly useful timeline format produced as it is
being generated.

Furthermore, timescanner does not actually extract MAC times from filesystems objects; for this, consider
using The Sleuth Kit’s fls, ils or mac-robber or TCT’s grave-robber tool. Like log2timeline, timescanner
reads various filesystem objects for data/time metadata contained therein, not metadata actually contained
within the filesystem itself concerning said object. For this reason, The Sleuth Kit continues to remain an
essential component of generating digital timelines and as such is an integral part of this work and the
provided prototype (see Annex B.1). However, when the need for extracting date/time metadata from
within certain files is necessary, then either log2timeline or timescanner should be used.

Ultimately, the choice of which tool to use, either timescanner or log2timeline, resides with the reader. The
solution the reader chooses should best reflect his actual requirements. The authors’ own specific
requirements were based out of necessity in analysing several dozen disk images which required keeping a
highly detailed track of each filesystem object and its associated date/time metadata. In the end, this
required implementing a highly customized timeline format which could just that, and it has been
implemented as prototype herein, based largely on The Sleuth Kit and log2timeline.

Moreover, in generating these timelines the authors came to the realization that little comprehensive
information was available in the public space and what was accessible often left more questions than
answers. As such, this work fills that void by providing useful information to the reader concerning the
generating of customised digital timelines. In addition, the reader is provided with sufficient technical
information that as an investigator he could readily explain the concepts behind timeline generation in a
courtroom setting. Of course, discussing tool specifics will require examining that tool’s source code prior
to providing any such explanation which is not conducted herein.

DRDC Valcartier TM 2011-216 1

1 Introduction

1.1 Objective

The objective of this technical memorandum is to introduce both relevant information concerning
the use and generation of digital forensic timelines as well as the various challenges surrounding
them. In addition, this technical memorandum will provide sufficient background material
including example shell scripts and C code so that the user can successfully carry out and
generate his own digital forensic timelines in a consistent manner. At the same time, the reader
will be able to exploit additional sources of date/time-based metadata in order to increase his
contextual understanding of transpired events as they relate to a given investigation.

1.2 Context

In the course of conducting a digital forensic investigation, many prospective sources of
information are potentially available to the investigator. However, many sources of date/time-
related metadata information are underutilized by investigators. These sources of information are
found throughout suspect disk images and are too often overlooked for inclusion in a digital
forensic timeline. Often times, however, timelines are not even used by investigators as the
tendency in the digital forensics community is to forgo their use.

An important problem with digital timelines is that while they can appear very simple to assemble
based on routinely available filesystem date/time-related metadata, much more data is often
lurking beneath the standard filesystem1. However, in order to access a lower level of date/time-
related metadata, it is necessary to search for both specific file types and locations which are
known to contain the sought after metadata. Once extracted, the additional metadata may provide
the investigator with a more reliable temporal context and frame of reference.

Although some automated digital forensic timeline-based generation software exists, as examined
in Section 2.6, they all have certain caveats. To date, no automated super-timeline generation
software is available. Thus, in order to improve digital timelines by incorporating additional
date/time metadata, the investigator must know both the file types to include and their location in
order to pass them on to one or more specialized parsers, which will return a timeline-based
output.

However, the largest problem facing investigators, at least with respect to lower-level filesystem
metadata, is finding additional sources of information and adequately parsing and processing
them. A more in-depth analysis of the various challenges facing forensic investigators
concerning timeline generation is addressed in Section 2.4.

1 The standard filesystem, as denoted herein, refers to the actual files which comprise said

filesystem. However, it is not technically possible to go beyond the filesystem itself. Rather, each
individual file is herein considered as a sub-filesystem node or leaf which itself may contain
additional filesystem-specific date/time-related metadata which requires extraction and analysis
using appropriate software tools prior to inclusion in a digital timeline.

2 DRDC Valcartier TM 2011-216

1.3 Benefits of improved timeline generation

The successful use and inclusion of various sources of information relating to date/time-based
metadata can greatly help the investigator to improve his contextual understanding of transpired
events prior to the commencement of an investigation based on available digital evidence.
Moreover, digital timelines which are based upon multiple information sources may help the
investigator improve his correlational awareness of various actions undertaken by individuals or
groups suspected in the alleged security incident.

Improved timelines based on additional information sources can help the investigator to
differentiate between user actions and valid filesystem and operating system operations relating to
the proper functioning and maintenance of the computer system. Valid system actions seen
through the appropriate context will appear as visible background noise which can be filtered out
using analytical data processing techniques, which although not examined herein, are highly
beneficial to removing inconsequential filesystem related activities. Moreover, this
supplementary information can allow the investigator to better target specific filesystem changes
that more precisely fit the dates and times of the alleged security incident(s) to understand and
contextualize them.

Through the use of multiple filesystem-based date/time-related information sources, the
investigator will be able to build better digital timelines. This will enable the investigator to
better correlate seemingly unrelated events which in fact are interconnected. Without additional
information sources, these links would likely be imperceptible due to his lack of improved
temporal and contextual awareness.

1.4 Notes

Although this technical memorandum specifically targets Windows systems, sufficient
background information has been provided regarding UNIX and Linux so that the reader can
better draw comparisons between these different systems and if need be, modify the scripts and
source code provided herein to suit his own specific UNIX-based requirements.

DRDC Valcartier TM 2011-216 3

2 Background information

2.1 About digital timelines

A digital timeline can be defined as the representation of filesystem time-based metadata
described in a human-readable manner which contains useful information relating to a specific
security event. It could also be defined as the chronological ordering of filesystem-related events
as preserved by the filesystem’s record-keeping constructs and metadata structures, which are
extracted and presented to the investigator in a human-readable manner.

Although digital timelines are very useful sources of security-related information, they tend to be
underutilized and underexploited for reasons explored throughout this section. While timelines
are useful in bringing together various chronological events, it cannot be overstated that coaxing
all the potential sources of information out of a filesystem is often difficult. Moreover, even once
all the potential information has been queried and its metadata extracted and converted to a
human-readable format, there is no guarantee that the filesystem’s various time-based metadata
sources have not been inadvertently altered or purposely tampered with.

While timeline generation software has been around for some time no intuitive GUI-based
timeline visualization software yet exists due primarily to the difficulty in developing an
application capable of responding to the needs of investigators when dealing with large datasets.
The amount of data collected while generating a timeline can be large, upwards of several
hundred thousands time-based events for an average modern operating system hard disk drive.
When investigating multiple disks, it is easy to reach many millions of time-based events,
although displaying them in an intuitive manner remains a challenging task.

However, the potential use for timelines is apparent. Filesystems and their time-based metadata
can be a boon to the investigator by providing additional information with respect to changes
within a given filesystem. Although timelines are a useful digital forensic construct, they all too
often lack the inclusion of additional date/time-based information sources which can help the
investigator better contextualize filesystem changes.

Important sources of date/time metadata are littered across a given hard disk drive. However,
specific locations and key file types are likely to yield more tangible results than others. For
example, consider the inclusion data sources such as the Windows Registry, Recycle Bin and
various Windows log files, each replete with time and date information. Moreover, user
interactions can be better understood by extracting date and times from sources including
electronic mail, Internet usage based on cookies and cached files, chat software logs, etc.
Coherently using as many date and time sources as possible may help the investigator build a
comprehensive portrayal of events leading up to the security event in question.

4 DRDC Valcartier TM 2011-216

2.2 Reasons for using open source software for timeline
generation

2.2.1 Commercially used forensic analysis software background

Today’s software market is littered with tools and programs which cater to the forensic
investigator. Due to the plethora of available options choices need to be made. This is
particularly important when considering how to best generate digital timelines from forensic disk
images. Many potential disk image filesystems abound, although the most commonly analyzed
are FAT and NTFS, typically from Windows-based computer systems. As such, it follows that
the most commonly used software for analysing Windows-based forensic disk images are
Guidance Software’s EnCase and AccessData’s FTK, both of which are particularly popular with
law enforcement.

Although Guidance Software’s EnCase is particularly well suited to developing additional
forensic functionality through its built-in EnScript software programming language, EnScript
programs can only run on computer systems where EnCase is installed. Whereas AccessData’s
FTK, which is another popular forensic software suite, it altogether lacks the software
development features of EnCase. Its strong point, however, is its ability to simultaneously
analyze multiple disk images via distributed computing2. Thus, while EnCase has the capacity to
be readily expanded beyond its innate capabilities and FTK can scale to handle large
investigations neither software product is adept at generating digital timelines.

Furthermore, both EnCase and FTK implement timeline generation and analysis differently.
Unfortunately, the approach taken by each product is, in the opinion of the authors, altogether
deficient and crude.

2.2.2 The use of Linux

The authors have therefore proposed that Linux should be used as a base platform for conducting
timeline generation. This will, in the opinion of the authors, enable the forensic investigator to
take advantage of the various data processing capabilities inherent to the operating system and
take advantage of its unprecedented support for many disparate filesystems3, unparalleled by any
other operating system.

The use of Linux will enable the reader to develop a platform-independent and generic approach
to timeline generation. In addition, any programs developed under Linux including Standard C
Library-based [31, 54] C programs and those running under Bash4, Perl5 or Python will run with a
minimum of effort and changes on other systems including Windows.

2 FTK version 3.2 is bundled with distributed processing capabilities.
3 It may be necessary to recompile the kernel in order to enable support for less commonly used

filesystems.
4 Under Windows, Cygwin can be used to run Bash shell scripts.
5 The Cygwin environment for Windows can be used to run Perl scripts. However, Perl library

dependencies may have to be satisfied, requiring the installation of additional library packages, as
with any other computer system where Perl may be run.

DRDC Valcartier TM 2011-216 5

While many different filesystems are in use today, those involved in the majority of forensic
investigations are largely Windows-based filesystems including FAT12, FAT16, FAT32, NTFS
and to a much lesser extent, exFAT. However, computer forensic investigations are not limited to
these. Other lesser used filesystems occasionally acquired for forensic investigation can include:
Ext2/3/4, UFS1/2, VxFS, FFS, RFS/ReiserFS, XFS, HFS+ and HFS, ZFS and Btrfs. These
filesystems are used by a variety of operating systems including Linux, BSD, UNIX, Mac OS,
Mac OS X and other UNIX-based systems.

Some filesystems are nearly universally6 supported by modern operating systems and include
FAT, CDFS (ISO 9660) and UDF filesystems. At the other end of the spectrum lie obscure
filesystems supported only by proprietary hardware or electronic devices including handhelds
(e.g. Blackberry, Palm, etc.) and other multimedia devices (e.g. TiVo, Xbox, etc.). Finally, there
are virtual disk images7 which can include Ghost disk images, VMware VMDK images,
VirtualBox VDI images and Microsoft VHD images.

Since the majority of forensic investigations today are conducted against Windows-based systems
it is important that any forensic software tool vying for market share be Windows compatible and
support the various Windows filesystems used over the last two decades. While there was a time
when commercial forensic software suites including FTK and EnCase supported only FAT and
NTFS filesystems, today they each boast broad filesystem support even for non-Windows based
filesystems8 9. Even relative newcomer X-Ways Forensics boasts a broad list of supported
filesystems10. Thus, support for commonly used filesystems is very important to timeline
generation and analysis as this software is dependent on the filesystem support provided by either
the underlying operating system or a specific software tool or suite.

Although various Windows-based commercial software offerings (e.g. EnCase, FTK, X-Ways,
etc.) are highly capable in their own right, they are not suitable for the advanced data processing
required for timeline generation and analysis in the manner the authors envisioned. However,
Linux, with its advanced built-in11 data processing capabilities and use of external third-party
tools and scripts, including Brian Carrier’s The Sleuth Kit, proves an ideal timeline generation
platform.

6 This is applicable to most modern operating systems, Windows or UNIX-based or POSIX

compliant [6, 7 and 14].
7 Software exists under Linux from QEMU and VirtualBox to manage and convert VMDK, VDI

and VHD between each other. VMware Workstation-specific command line tools can be used to
perform specific operations against VMDK disk images.

8 FTK 3.2 has support for FAT12/16/32, NTFS, Ext2/3/4, exFAT, VxFS, Microsoft VHD, AFF,
EWF and Blackberry IDP backup files, not including the other disk image formats it supports. [2,
3]

9 EnCase 6.0 supports EWF, FAT12/16/32, NTFS, exFAT, Ext2/3, UFS, ReiserFS, JFS, FFS, Palm,
HFS, HFS+, CDFS (ISO 9660), UDF (DVD) and TiVo 1 and 2 filesystems. [1, 3]

10 X-Ways Forensics supports FAT12/16/32, NTFS, exFAT, TFAT, Ext2/3/4, CDFS (ISO 9660),
UDF (DVD) and Next3. [4]

11 These capabilities are inherent in not only Linux but in most modern UNIX-based operating
systems.

6 DRDC Valcartier TM 2011-216

2.2.3 Use of The Sleuth Kit

The fact that The Sleuth Kit is free and open source software by no means infers that it is inferior
to its commercial counterparts (e.g. EnCase, FTK, X-Ways, etc.). In fact, for a free and open
source software suite, it provides exceptional filesystem support12 and forensic analysis
capabilities and fully supports all the filesystems commonly required for investigating Windows
systems. Moreover, The Sleuth Kit is an integral part of the timeline generation technique carried
out in this technical memorandum.

The only notable exception to The Sleuth Kit’s support of Windows-based filesystems is for
exFAT, which is relatively new and not yet in wide use, although its acceptance is growing with
the increased usage of large flash-based storage devices. However, the fact that some filesystems
are not readily supported by The Sleuth Kit does not prevent it from being used under Linux. All
that is required is that the kernel supports the filesystem, either as a natively compiled-in kernel
module or as a FUSE module. Common FUSE-supported filesystems include exFAT and ZFS.

Unfortunately, the majority of The Sleuth Kit’s tools will not work against disk images they
cannot recognize. As such, disk images which are exFAT or ZFS-based, for example, cannot be
directly analysed by The Sleuth Kit.

Although The Sleuth Kit fully supports CDFS, UDF is not supported. It is however important to
consider that many optical discs, CD or DVD-based, are still based on the ISO 9660 standard
instead of the more recent UDF standard13 [6, 7]. For example, consider the various optical discs
that the different versions of Windows (Windows ’95 to Windows 2008) have been distributed
on. They are all based on the ISO 966014 filesystem even though many of them have been written
to DVD requiring more storage than afforded by typical CDs (see Annex A.1 for more details).

The ISO 9660 standard is still more readily used than UDF because it allows for filesystems
much larger than the physical limitation of CDs (approximately 700 MB) with a maximum
filesystem size of 8 TB [6, 52]. However, CDFS suffers from filename and directory size
limitations. UDF, on the other hand, supports both larger file names and directory sizes [7, 9 and
14]. Moreover, a UDF filesystem can store an internal CDFS filesystem useful for creating
hybrid filesystems which can coexist on the same optical disc [6, 7, 8 and 9]. As such, true DVD
UDF-based filesystems seem to be employed less than common wisdom may suggest.

The situation is the same for non-Windows optical discs including those used for the installation
of UNIX-based operating systems such as Solaris and Linux. While many Linux and BSD-based
operating systems can fit on a single CD, many others are distributed by DVD due to their large
size. Examples of this are available in Annex A.2.

12 Currently, as of version 3.2.0, The Sleuth Kit supports the following filesystems: Raw (dd-style

disk images), AFF, EWF, NTFS, FAT12/16/32, UFS1/2, Ext2/3, HFS+, Swap and CDFS (ISO
9660) [5]. It does not yet support UDF or exFAT, both of which are supported by FTK, EnCase
and X-Ways Forensics [1, 2, 3 and 4].

13 Using a DVD optical disc does not require the use of the UDF filesystem; CDFS is commonly
used atop DVD optical discs.

14 As determined using the Linux commands isovfy, mount, file and hexdump.

DRDC Valcartier TM 2011-216 7

While The Sleuth Kit includes many tools and utilities, only several of them actually pertain to
timeline generation. Specifically, two filesystem-aware tools, ils and fls, fully support all the
filesystems that The Sleuth Kit already does. However, when filesystems not directly supported
by The Sleuth Kit are encountered, other tools can be used in lieu. If all that is needed from these
tools is filesystem object date/time metadata extraction, then consider using mac-robber from
Brian Carrier, the author of The Sleuth Kit.

Another similar tool is grave-robber, which is a part of The Coroner’s Toolkit and written by
Wietse Venema and Dan Farmer. The mactime tool present in both The Sleuth Kit and The
Coroner’s Toolkit is used to parse the output from either mac-robber or grave-robber and convert
it into a human-readable text-based timeline.

All that is required for generating a timeline against a filesystem not supported by The Sleuth Kit
using either mac-robber or grave-robber is some form of filesystem support which at a minimum
must be read-only. Under Linux, filesystem support is provided through one of two mechanisms.
The first is direct kernel support which implies that the Linux kernel has built-in support for a
given filesystem and the other through the Linux FUSE subsystem (see Section 2.2.4). Simple
techniques examined in [10, 11, 12 and 13] will help to ensure that the forensic examiner’s efforts
are profitable and productive when working with filesystems not supported by The Sleuth Kit.

2.2.4 Use of log2timeline

As with The Sleuth Kit, log2timeline is an open source software suite. Written by Kristin
Gudjonsson, it is a software timeline generation suite. Through a set of built-in plug-ins for
importing various data files such as Bodyfiles, network PCAP files, Windows event logs and
many other types of log file formats it can export processed timeline to multiple formats including
the Mactime, CEF, CSV and other timeline formats. For further import and export specifics refer
to Section 5.2.1.

Log2timeline is unique in that in comparison to every other possible timeline generation tool
currently in use today, it supports the largest gamut of import and export data file formats.
However, it does not read in raw filesystem metadata and as such requires that this information
has already been processed by software tools including ils, fls, grave-robber or mac-robber.
However, when log2timeline’s import and export data files capabilities are combined with The
Sleuth Kit’s filesystem date/time metadata support, a powerful toolset becomes available to the
digital forensics investigator.

For these reasons, it was decided early on that The Sleuth Kit and log2timeline would be
combined to create a robust timeline analysis generation suite. Although not all investigations
require filesystem timeline analysis, by nevertheless incorporating them into an analysis,
improved contextual awareness can be gained by placing events, particularly log generated
events, in a more structured framework.

Log2timeline technical specifics can be found in Section 2.6.4. However, since the suite does not
fully support Windows registry timeline extraction, rather only specific portions of the registry
(see Section 5.2.1 for more details) Harlan Carvey’s regtime.pl Perl script is used to convert all
registry entries with date/time-related information to a Bodyfile-based timeline.

8 DRDC Valcartier TM 2011-216

2.2.5 Linux capabilities

The authors believe that Linux, with its multitude of built-in tools, utilities and other third-party
software can provide a highly capable data processing and analysis platform. For example,
various tools can be used to process both low and high-level data from suspect disk images while
other software can be used to mount, copy, extract, verify and validate a disk image’s contents.
Other tools can then be used to sort, find, recover, undelete, search, hash, convert, analyse, extract
date/time metadata and detect and compare a disk image’s contents. And this can be done for
many different image formats and filesystems. Consider that a relatively modern Linux operating
system can readily support, natively [40], through its FUSE subsystem [39] or through
commercial or open source software add-ons, the following physical filesystem formats: ADFS,
AFFS, BeFS, Btrfs, CDFS (ISO 9660), Coherent, CramFS, EFS, exFAT, Ext2/3/4, FAT12/16/32,
Files-11, HFS, HFS+, HPFS, JFS, MINIX, NTFS, QNX4FS, ReiserFS, Reiser4, ROMFS, SysV,
UDF, UFS1/2, UMSDOS, VxFS15, XENIX, XFS and ZFS. There are likely other filesystems
which could be supported but may require additional effort to render functional under Linux.

Other Linux tools can be used to extract used, unallocated and slack disk space from suspect disk
images. Moreover, advanced text processing, string extraction and pattern matching capabilities
may be of interest to those processing large datasets. However, the list of potential forensic
capabilities available from Linux is too lengthy to fully enumerate herein.

Of particular importance to the forensic investigator, especially for timeline generation and
analysis is the ability to script multiple tools together. This enables the output or results of one
tool to be fed into one or more tools to conduct additional work thereby implementing a
rudimentary form of automation. Linux systems offer many possible shell scripting languages to
choose from, some more optimized for intensive data processing and forensic-like work than
others. In this technical memorandum, the Bash shell scripting language is used for simplicity
and portability.

As with any other forensic task, repeatability is a must. As such, it is possible to have the Linux
system record in a re-playable text-like file16 all console-related I/O, whether typed in or
displayed as results from a program. This will enable the investigator to ensure that any
commands used and specified parameters are recorded saved for future use.

It is the authors’ belief that the use of the command line, its tools and various parameters can
improve efficiency, reliability and repeatability of the forensic investigative process, particularly
for timeline generation, which is a highly automatable task. It is for these reasons that the authors
have conducted their work atop the Linux operating system.

The commands, scripts and tools presented herein are bound together into a cohesive timeline
generation system using rudimentary a UNIX shell script and several simple C programs.

15 Veritas software including VxFS filesystem support for Linux is now sold and marketed by

Symantec Corp.
16 This is done using the Linux script command.

DRDC Valcartier TM 2011-216 9

2.3 Why are digital timelines underutilized?

Digital timelines are unfortunately underutilized in digital forensic investigations. This is partly
due to the poor support afforded to timelines by most existing software forensic frameworks17.
Another problem is that many investigators do not have a good working knowledge of low-level
filesystem mechanics and instead rely on graphical interfaces to automatically do the work for
them, rather than performing key tasks manually.

Low-level filesystem forensics is a complex maze of metadata and filesystem structures which
must be understood prior to analysing them. Although it is possible to drudge through simple
filesystems such as FAT [19, 22 23 and 28], others such as NTFS [21, 25, 28 and 53] are too
complex to merely labour through. And although there are software tools which claim to have
low-level filesystem capability, few of them are truly able to analyse the structures and metadata
therein.

The problem is further exacerbated by the fact that many filesystems are poorly documented,
even commonly used ones. Furthermore, many filesystem specifications are written for engineers
or software developers and not easily understood by those not well-versed in software
programming or design. Many more filesystem specifications are simply unavailable to the
general public including NTFS, currently the most widely investigated filesystem examined by
investigators.

Fortunately, there are some excellent references to today’s common filesystems including FAT
[19, 22, 23 and 28], Ext2/3/4 [20, 24, 26, 27, 28, 29, 30, 35, 36 and 37], RFS [26, 27, 30, 32 and
33], UFS1/2 [26, 27, 28, 29, 30 and 38] and VxFS [26, 27, 29, 30, 35 and 41]. Some software,
particularly The Sleuth Kit and AFF’s fiwalk program, have exceptional low-level filesystem
analysis capabilities for extracting metadata and other structure-related information. Other
software suites such as FTK and EnCase do provide information concerning low-level filesystem
metadata although not in the same manner. The metadata is presented as file-related attributes
rather than treated as separate entities from the files themselves.

In contrast, through EnScript, EnCase has the ability to allow for the automatic collection of such
metadata and structure-related information, information about such a script is not forthcoming at
this time. FTK’s filesystem metadata and structure analysis capabilities are no better than
EnCase’s.

Possibly the most important reason why timeline analysis has not caught on, is the inability for
existing software to analyse, parse, visualize and present very large amounts of information to the
investigator in a meaningful manner. While the timeline analysis of a simple desktop with one
hard drive is manageable, the analysis of dozens of disks with multiple partitions with data
spanning over many years can pose very significant data processing and analysis challenges.
Processing and making sense of such information can take days and even weeks, especially if
conducting pattern and trend analysis. However, the ability to visualize such vast amounts of data
would be of significant help in piecing together the various events or actions sought after.
Unfortunately, no known software tool exists in the realm of digital forensics which is capable of
visualizing such vast amounts of data, correlating and finding important patterns and trends.

17 Consider FTK, EnCase, Autopsy and PTK to name a few.

10 DRDC Valcartier TM 2011-216

Although certain data fusion products could be used, these products tend to be somewhat domain-
specific. Thus, sometimes gargantuan efforts must be made to search for keywords, times and
file names in order to attempt to make sense of the data.

However, when analysing very large disk sets, it is not uncommon for all the amassed timeline-
related data to be many gigabytes in size and spanning millions of time-related events.
Attempting to search through this data multiple times using standard data processing tools
including grep, cat, awk, sed and tr can make analysis painfully slow. Therefore, better search
capabilities are required. The use of databases, including MySQL and PostgreSQL, can
significantly speed up searches. However, this requires that the investigator be knowledgeable in
carrying out SQL queries and implementing the appropriate database structures and importing the
data into said structures.

Thus, to make timeline analysis a more integral part of the investigation process, improved
processes and tools are needed. This also requires enhanced text and data processing and
visualization capabilities. In addition, pattern and trend analysis software would be highly
advantageous when dealing with large volumes of data. However, these capabilities are not as of
yet integrated into any forensic tool-set or suite known by the authors. In the future, it may be
possible that software suites including EnCase18 and FTK will at a minimum, provide a semi-
automatic approach to conducting timeline generation and analysis with the ability to visualize
the timeline.

2.4 Timeline challenges

The generation of accurate and pertinent digital forensic timelines can present many difficulties to
the investigator. Many of these difficulties are technological in nature in that sufficient solutions
are not yet available while others can be corrected with a change in perception by the investigator.

An important point is maintaining and preserving the chain of custody and chain of evidence. In
order to do so, the investigator must never work directly with the evidence disk or even the first
copy thereof (or file-based image copy of the evidence disk) but only with the second or tertiary
copy of the original suspect disk. All disk operations must be read-only at all times. This can be
achieved using write-blockers or using the Linux operating system mount command which can
successfully maintain a designated read-only disk’s integrity.

One very important challenge to consider is the fact that filesystem MAC time attributes can be
directly modified by specialty software tools often employed by hackers to cover their tracks.
These tools exist on the Internet and can be readily found in hacker forums; however, the
knowledgeable hacker is likely to write his own software to evade detection from AV software
and IDS/NIDS systems. Finding evidence of such tampering can be very difficult, especially if
the software was operated remotely against a locally exploited machine.

Many modern operating systems, in their quest for improved filesystem performance, will allow
the system administrator to disable access date/time updates for files and directories. Generally,
operating systems will update each accessed file or directory’s access date and time but if this

18 EnCase currently does support very basic timeline visualization capability but is extremely limited

and provides little net benefit to the investigator.

DRDC Valcartier TM 2011-216 11

feature is disabled, it will not be possible to know when a given file or directory was last
accessed. It is a common practice under Linux and Windows to disable access update writes as it
can significantly improve filesystem performance. Under Linux, disabling access updates must
be manually configured on a per-filesystem basis. Under Windows, this became the default out
of the box for Vista and Windows 7. Thus, not knowing when a file or directory was accessed
can have an impact on the investigation when attempting to piece together from the timeline who
accessed what. The advantage is that the investigator does not have to contend with matching file
access changes to actions undertaken by AV scans.

While considering the ramifications of disabled access updates, it is important to consider the
impact that some anti-virus scanners may have on a filesystem when generating digital timelines.
Much modern AV software has been designed, to varying extents, to reset any changed access
dates and times. The investigator may then have to contend with some scanners not resetting
these appropriately and will have to remedy the problem through pattern and trend analysis to
determine which access time changes were likely the results of an AV scan. Moreover, when
considering that a digital timeline may contain hundreds of thousands or even millions of dates
and times, any unnecessary additions caused by aberrant AV software are unwelcome.

Although this technical memorandum does not specifically explore the recovery of date/time
metadata from deleted files, it is important for the investigator to know that this is possible and
can provide additional sources of metadata information. The use of this additional metadata
information can help investigators to better establish user patterns and trends based on historical
metadata from user-based system usage. Despite the fact that some filesystems rely on inodes,
other on inodes and extents and others on allocation tables, The Sleuth Kit can in many cases be
used to read the date/time metadata of deleted files and directories which still have intact
filesystem structures19.

Other files that reside in unallocated space can sometimes be recovered using data recovery
software with apparently intact date/time metadata. However, little credence should be placed on
these recovered metadata since their integrity cannot be verified due to the absence of their
original filesystem structures. If the investigator attempts to recover deleted files, he should
concentrate on extracting useful date/time metadata from time metadata-rich files such as deleted
event logs, registry hives, etc.

It is also possible, although not explored herein, to recover date/time metadata directly from
recovered files that preserve their own date/time metadata within their own metadata structures
(e.g. EXIF metadata within JPEG files). This is a time-consuming and complex endeavour likely
to result in information overload. However, this approach may be important, especially when
looking for specific file types. Thus, while the use of EXIF information is in interesting topic, it
is not examined in this work.

Another important challenge rarely examined in digital forensics is the subject of NTFS Alternate
Data Streams20 (ADS) and their effect on filesystem date/time metadata. The trouble is that there
is some uncertainty concerning what occurs to the file hiding the data stream when the stream is

19 This requires that inode or allocation table metadata and structures are still intact for a given file or

directory.
20 NTFS ADS are sometimes used to hide data [42].

12 DRDC Valcartier TM 2011-216

created and appended to the file as this subject is not found in the currently available literature.
Thus, the authors undertook several short experiments to determine what changes, if any, are
made when working with NTFS data streams.

Experiments conducted by the authors using NTFS-based files created at time X and then later
appended with a data stream at time Y clearly show that file’s modify and access date/time
attributes have changed. Then, at some later time Z, simply reading the data stream was also
found to update the file’s access date/time attribute. However, the file’s create date/time attribute
remains unmodified throughout the actions undertaken at time Y and Z. Filesystem date/time
attributes are specifically examined in Section 3.

Under Linux, using The Sleuth Kit and advanced data processing shell scripts, it is possible to
detect and extract NTFS data streams. However, it is important to remember that copying or
moving NTFS files with data streams to non-NTFS filesystems will not actually copy or move
any appended data streams21 (e.g. FAT and exFAT). Supplemental information concerning the
effects of copying or moving NTFS files can be found in Annex A.3.

In today’s modern computing world there are many sources of date/time information on a given
hard disk drive. All too often, however, the vast majority of additional sources of date/time
information are excluded from the overall timeline generation. This specific problem is limited to
the commercial timeline generation tools including FTK, EnCase and X-Ways Forensics. The
Sleuth Kit too does not have the ability to seek and incorporate additional date/time sources into
its generated timeline. However, since the advent of log2timeline, another open source tool, it is
possible to use The Sleuth Kit or The Coroner’s Toolkit-based filesystem timelines and go far
beyond their innate capabilities. Log2timeline date/time metadata source specific are examined in
Section 5.2.1.

Another important issue which requires attention is the lack of a definitive digital timeline
standard. Even though various tools can generate digital timelines, no official digital forensics
timeline standard exists. The best standard to date, in the opinion of the authors, is that of the
MAC time/Bodyfile format put forward by Wietse Venema and Dan Farmer and later improved
upon by Brian Carrier22 [10, 11, 13, 15, 17 and 18].

Finally, timeline generation can be a time-consuming process whose results are difficult to
interpret. This is due to the amount of data processing required to extract date/time metadata
from the filesystems and then seek out additional sources of information and coax any pertinent
date/time information out of them. This information is difficult to understand due to the sheer
number of timeline events which must be viewed in a linear and fluid manner. The use of
improved visualization, pattern and trend analysis tools would be of great benefit here to the
investigator in order to detect abnormal patterns and trends.

21 Some filesystems (e.g. Extent-based filesystems) when used in conjunction with an appropriate

NTFS driver (e.g. NTFS-3G) can actually copy or move data streams into the filesystem space
normally reserved for file-based extended attributes. However, this requires more testing which
was not carried out by the authors in order to validate the maximum stream size which can be
copied in to this space.

22 No official information can be found indicating that the standard actually begins with
Venema/Farmer although no information exists to the contrary.

DRDC Valcartier TM 2011-216 13

2.5 Brief remarks concerning the implementation of timeline
generation

From the outset of an investigation, depending on the operating systems involved, it is important
for the investigator to determine which data sources of date/time metadata are to be included in
the final timeline. However, it is also important to choose which software tools or components
will be used to generate the timeline. This too should also be based mainly on the operating
systems and filesystems to be examined. Deciding upon these two key points early on will help
the investigator formulate an appropriate plan of action for generating the timeline.

Regardless of which plan of action the investigator chooses, he must also consider if he will
attempt to recover deleted data files which may be of use in the generation of a timeline.
Operating system deletion of log files, registry hives, etc., are a normal part of operating system
maintenance and as such recovering and including these files may help to add additional temporal
context to the timeline. Recovering these files, however, requires an in-depth knowledge of data
recovery tools and techniques which may not be limited to undeletion and data carving tools and
software. [43, 44]

2.6 A short list and summary of available timeline generation
software currently in use

The authors have compiled a representative list of digital forensic software tools and frameworks
offering timeline generation capabilities in use today by forensic investigators. Moreover, the
authors have provided a short timeline capability for each tool listed below so that the reader who
perhaps is not familiar with some of the following tools better comprehend their timeline
generation capabilities.

The most popular software timeline generation or visualization tools are, as determined by the
authors in no order of precedence are as follows below:

 EnCase
 FTK
 Ex-Tip
 Log2timeline
 NTI FileList Pro
 The Sleuth Kit (ils, fls, mactime)
 Autopsy
 PTK
 Zeitline
 AnalyzeMFT.py
 Fiwalk
 Mac-robber
 DFF (Digital Forensic Framework)
 The Coroner’s Toolkit (grave-robber, mactime)
 NFILabs Aftertime
 SIMILE Timeplot

14 DRDC Valcartier TM 2011-216

A brief summary of the aforementioned timeline generation software tools follows below. All
views and opinions expressed herein are those of the authors.

2.6.1 Encase

EnCase, developed and marketed by Guidance Software, is the world’s premier commercial
forensic software suite and also its most commercially successful one. It is the frontrunner for
submitting processed digital evidence in court. It is difficult to determine how widely used it is
but given EnCase’s wide reaching acceptance in both the digital forensic community and the
marketplace, it is likely that many forensic investigators are comfortable with this particular
framework. The framework is filesystem-aware but does not read or write Bodyfiles.

2.6.2 FTK

FTK, developed and marketed by AccessData, is another favourite commercial forensic software
framework popular with both law enforcement and government. It has a basic timeline
generation capability that is no better than EnCase’s. The framework is filesystem-aware but
does not read or write Bodyfiles.

2.6.3 Ex-Tip

Ex-Tip, developed by Michael Cloppert, is a proof of concept tool submitted to SANS and the
precursor, at least technologically, to log2timeline. While it does not read a filesystem for
date/time related metadata, it can read in Bodyfiles and extract date/time metadata from McAfee
log files and Windows registry. It has the ability to read and write Bodyfiles. The tool does not
consider the underlying filesystem type as it must be mounted in order for this tool to work. [67]

2.6.4 Log2timeline

Log2timeline is the premier timeline generation framework. It supports the largest array of
date/time metadata extraction capabilities (see Section 5.2.1 for a complete list) of all the
programs and tools examined in this section. Moreover, it is a direct competitor to NFILabs
Aftertime. The tools comprising log2timeline are written in Perl and will run on Linux, Mac OS
X and other UNIX systems. It works by applying selected plug-in modules against specified
files. Some of the tools and plug-ins will run on Windows while others require modifications to
do so. The log2timeline framework is easily scripted to conduct advanced file detection and
date/time metadata extraction. Although the tool comes equipped with its own recursive file
processing tool, timescanner, which can parse every encountered file with selected plug-ins, this
proves too blunt of a search. File searching and metadata extraction can become refined through
scripting. This tool has the ability to read Bodyfiles. Log2timeline does not consider the
underlying filesystem type as it must be mounted in order for this tool to work. [68, 69]

2.6.5 NTI FileList Pro

NTI FileList Pro is a commercial software file inventorying software system which is compatible
with older versions of Windows, XP and previous versions including NT, 98, 95 and DOS. This

DRDC Valcartier TM 2011-216 15

program does not currently appear to be in high use by government or law enforcement. This
program is DOS-based and partially filesystem-aware. It does not read or write Bodyfiles.

2.6.6 The Sleuth Kit

The Sleuth Kit is the most widely used open source software forensic framework whose
capabilities are supported both by PTK, fiwalk and Autopsy (to name only a few). It is very
popular even among law enforcement officials, who use it to validate their own work carried out
under EnCase and FTK. The Sleuth Kit relies on fls and ils to extract date/time metadata from
filesystem objects and can write their output to the Bodyfile timeline format. On the other hand,
the mactime tool is used to convert Bodyfiles into human-readable text. As a note, The Sleuth
Kit’s mactime tool cannot read metadata directly from a filesystem; instead, it must have a
Bodyfile to read. The Sleuth Kit is filesystem-aware. [70, 71, 72 and 73]

2.6.7 Autopsy

Autopsy, the default graphical interface for The Sleuth Kit, provides the investigator with the
ability to generate timelines based on the underlying tools found in The Sleuth Kit. Autopsy,
which relies on The Sleuth Kit, is filesystem-aware and has the same Bodyfile and Mactime
timeline format capabilities as The Sleuth Kit. [70, 71, 72 and 73]

2.6.8 PTK

PTK, developed and marketed by DFLabs, is the premier graphically-based commercial open
source software offering. Its functionality is almost entirely derived from The Sleuth Kit
although other functionality is made available by other open source forensic software tools and
programs. Its timeline-based analysis capabilities are superior to those thus far enumerated herein
as its timeline interface is easy to visualize and is somewhat intuitive to navigate. PTK, which
relies on The Sleuth Kit, is filesystem-aware. It relies on The Sleuth Kit and Bodyfile format to
generate its visual timelines.

2.6.9 Zeitline

Zeitline is a prototype digital timeline framework. It is written entirely in Java and should
therefore be cross-platform compatible. It can import syslog-like files and date/time Bodyfiles
generated using The Sleuth Kit’s fls and ils programs (or from other Bodyfile-generating tools
and programs). Zeitline can be used to process, filter and move various events around. It has no
visualization capability. However, this program is not filesystem-aware.

2.6.10 AnalyzeMFT.py

AnalyzeMFT.py is a unique tool in that it is designed specifically for analyzing NTFS filesystems.
What sets it apart is its ability to verify whether a filesystem object’s creation time is intact based
upon its examination of a lesser used NTFS creation time metadata structure. It can write its
output to the Bodyfile format. This tool is NTFS-aware.

16 DRDC Valcartier TM 2011-216

2.6.11 Fiwalk

Fiwalk, short for file inode walker, is a program which uses The Sleuth Kit to process a given
disk image. It has the same filesystem support as The Sleuth Kit and can output an extensive set
of data about all files and streams attached to a given filesystem. It can output all collected
information to the console, to an XML file or generate a Bodyfile which can later be processed
with mactime to generate a human-readable text-based timeline. Fiwalk, which relies on The
Sleuth Kit, is filesystem-aware. [77]

2.6.12 Mac-robber

Mac-robber, written by Brian Carrier of The Sleuth Kit, is designed after The Coroner’s Toolkit’s
grave-robber tool. The mac-robber tools reads in using standard system calls (under UNIX the
stat() system call) the date/time and filesystem permission metadata concerning one or more
filesystem objects. Output is sent in Bodyfile format to the console or redirected to a file for
storage. Mac-robber does not consider the underlying filesystem type as it must be mounted in
order for this tool to work. [13, 12, 74 and 75]

2.6.13 Digital Forensic Framework

DFF (Digital Forensic Framework) is an open source analysis framework which supports timeline
generation and visualization. Both Linux and Windows precompiled binaries are available for
use as is the source code for recompilation. The program supports FAT12/16/32, NTFS and
Ext2/3/4. Its timeline generation is basic and supports only filesystem object MAC times. Its
visualization capabilities are navigable but not as advanced as those provided by NFILabs
Aftertime. This tool does not have the ability to save its work, print reports or generate Bodyfile
Mactime or TLN timelines. Moreover, the timeline navigation window’s export feature does not
currently work. This program is filesystem-aware.

2.6.14 Grave-robber

Grave-robber (which actually calls The Coroner’s Toolkit mactime program) is very similar to
Brian Carrier’s mac-robber tool, with the same basic features and functionality. This program is
used far less often today as it has been altogether superseded by The Sleuth Kit and mac-robber
and as such its use is not advised. Grave-robber and mactime do not consider the underlying
filesystem type as it must be mounted in order for these tools to work. It can also save its output
using the Bodyfile format. [13, 11, 10 and 76]

2.6.15 NFILabs Aftertime

NFILabs Aftertime, developed by the Netherlands Forensic Institute, is the most mature and
capable timeline generation and visualization program available today. It is similar in capability
to log2timeline but does not require the use of scripts to find and feed specific file types for
date/time metadata extraction. Although it currently supports many file formats it is second only
to log2timeline with respect to its number of supported formats. The tool is freely available to
anyone and executable binaries are available for both Windows and Linux; however, no source

DRDC Valcartier TM 2011-216 17

code is available for recompilation. Its visualization capabilities are superior to all other tools
compared herein. The program only accepts disk images for timeline analysis and supports
FAT16/32, NTFS, Ext2 and HFS. It supports both raw (dd-style) and EnCase-based disk images.
This program is filesystem-aware. The tool’s downside is that it cannot export its timeline to the
Bodyfile, Mactime or TLN timeline formats and its HTML and CSV report generation functions
currently generate only empty files.

2.6.16 SIMILE Timeplot

The final examined in this work is the SIMILE Timeplot widget which was originally written by
Stefano Mazzocchi. It is a unique tool but requires much work to render it functional. It will
work with simple timelines which have been stripped of all comments and unnecessary
information, but this requires a script of custom tool to reparse a large timeline file into a more
appropriate format which the widget can handle. Underneath the hood, it runs Java which makes
enables it to be multi-platform. However, since Java can be very memory intensive, it can take a
very long time before anything is rendered when working with many tens of thousands of points.
Upon parsing the data into a usable format and then attempting to work with millions of points,
the application crashed. Further adding to the frustration of using this tool is the necessity of
customizing the widget to specific data formats and adjusting the output. This widget only
supports its only timeline format which can otherwise be generated by log2timeline.

18 DRDC Valcartier TM 2011-216

3 Filesystem-specific details

3.1 Background

In this section, various technical details are examined concerning the various filesystems
investigators are most likely to encounter. The discussion will include an in-depth treatment of
MAC times and filesystem permissions as they pertain to FAT, NTFS and UNIX-based
filesystems.

3.2 Topics excluded from the filesystem analysis

3.2.1 Specific filesystems

Various filesystems have been left out from examination in this section. For Windows-based
systems, CDFS, UDF and exFAT have been excluded. For UNIX and Linux, the default
filesystem Ext2/3/4 has been assumed as the underlying filesystem the investigator will analyze.
The reasons for these exclusions are examined herein.

Where optically-based filesystems are concerned (CDFS and UDF), once data is written to a CD
or DVD, all data written to the disk remains intact unless the disk is reformatted using CD-RW,
DVD-RW or BD-RW technology. Although optical discs can be appended to and can even have
new volumes added to them which can be set to disregard all previous volumes on a given optical
disc, the fact remains that other volumes and their data continue to persist even if they are not
immediately accessible. Special software exists in both the commercial and open source world
which can read any and all optical disc volumes even if those volumes are no longer recognized
by the underlying operating system or optical disc device driver. That said, once those volumes
are read, their date/time metadata can be extracted using software such as mac-robber. [6, 7, 8, 9,
52, 57, 58 and 59]

As for exFAT, a recent filesystem from Microsoft intended specifically for flash storage, it can
nevertheless be used on mechanical disk drives. However, unlike the FAT filesystem which has a
publicly available specification [19, 23 and 28] and NTFS, which has been reverse-engineered
[21, 25, 28, 53, 63 and 65], no publicly available Microsoft specification exists for exFAT in
order to shed light on its underlying metadata structures. Fortunately, a recent open source
software initiative by Andrew Nayenko (FUSE exFAT and exFAT Utils) provides functional
source code which supplies both a FUSE module for mounting exFAT volumes and various
utilities for managing said volumes. In order to understand the underlying capabilities and
features of this new filesystem, the investigator will have to study the source code. Fortunately,
however, software date/time metadata extraction tools such as mac-robber can be used against
exFAT. Although exFAT is gaining in popularity, it is not yet popular enough, at least in the
opinion of the authors, to warrant direct examination in this technical memorandum. [60, 61]

For the UNIX-specific analysis of this section, the information has been presented in a filesystem-
neutral language. Although the Extended filesystem is the default Linux filesystem in most

DRDC Valcartier TM 2011-216 19

distributions, Linux is capable of working with many diverse filesystems from a range of
operating systems.

3.2.2 Extended attributes

Many modern filesystems support additional filesystem metadata structures that include extended
attributes. Windows supports extended attributes only for NTFS which can be read and set
directly from Linux. While modern UNIX operating systems including Linux fully support
extended attributes working with them under UNIX and Linux, it is more complicated than
working with NTFS extended attributes. As such, Linux and UNIX and extended attributes are
not examined in this work.

The problem in working with them under Linux is that the issue lies in the fact that many other
filesystems’ extended attributes are supported using proprietary software tools and UNIX kernels.
For example, although modern Solaris implementations fully support extended attributes,
accessing them under Linux is not possible because it has neither the appropriate software tools
nor does it have the necessary UFS kernel filesystem structures to support Solaris-based extended
attributes, as determined by the authors through experimentation. However, other filesystems
including Ext2/3/4, XFS, JFS and Btrfs fully support the reading and setting of extended
attributes under Linux, as also determined by the authors through experimentation.

3.2.3 A note about ACLs

Both Windows and Linux support filesystem ACLs. As such, a short examination is appropriate.
Both systems provide the necessary software tools required to work with ACLs. Moreover,
Linux can not only work with Linux and UNIX filesystem ACLs but can also work with NTFS
ACLs. Although ACLs are not currently used for building digital timelines their inclusion has the
potential to help the investigator better understand the links between filesystem resources and
those who have access to them. Conversely, the use of ACLs in such an analysis may introduce
new sources of information which can lead to confusion and information overload. The inclusion
of ACLs in digital timeline analysis has not been carried out herein.

3.3 About MAC times, their limitations and consequences

3.3.1 Background

MAC times, sometimes also called MACB times, are the date/time filesystem metadata
associations used to express the specific date/time metadata different filesystems use. These
expressions are used by both the Bodyfile and TLN formats and are represented as m, a, c and b,
respectively. More specifically, M corresponds to a filesystem unit’s23 modification time and is
often denoted as m and referred to as mtime. A filesystem unit’s last recorded access time, A, as
represented by a is commonly referred to as atime. The last change or modification date/time

23 A unit is a file, link, directory, pipe, device or any other type of valid filesystem object.

20 DRDC Valcartier TM 2011-216

recorded for a given filesystem unit, C, is represented as c and referred to as ctime. Finally, a
filesystem unit’s creation time, B24, commonly referred to as crtime, is denoted as b.

However, different filesystems and operating systems behave differently and may not necessarily
implement the aforementioned range of MAC times in the same manner. However, other than
crtime for NTFS, no notable examples have been found. [10, 11, 13, 15, 16, 17, 18, 19, 20, 21,
23, 24, 25, 28, 29, 32, 33, 41 and 53]

3.3.2 MAC times under Linux and UNIX

As far as it can be determined, commonly used Linux and UNIX filesystems, including Ext2/3/4,
UFS1/2, VxFS, RFS, etc., implement the mtime, atime and ctime date/time metadata constructs
[20, 24, 28, 29, 30, 31, 32, 33 and 41]. In fact, because modern UNIX and Linux systems are
based on the ANSI Standard C Library [31, 54] and other POSIX [55] compliant C libraries, there
is uniformity across these operating systems. Filesystem uniformity is achieved using the UNIX
stat() system call which is used across Solaris, Linux, BSD and others [29, 30 and 31]. Most, if
not all modern UNIX-based filesystems, will behave similarly with respect to MAC times.
Precise details are not available for some filesystems as their specifications (e.g. XFS, JFS, ZFS,
etc.) are not available in the public domain. While their source code is in the public domain, a
complete source code review is necessary in order to understand the internal mechanisms of these
filesystems and their similarity to those mentioned above.

UNIX and Linux supported filesystems with publicly available design specifications include
FAT25 [23], Ext2/3/4 [24] and RFS [33] while other filesystems including UFS1/2 [29] and VxFS
[29, 41] are sufficiently well documented that an investigator can find his way around and
understand the underlying functionality.

The Linux Ext2/3/4 filesystems are similar to their brethren (UFS, VxFS and RFS) except for the
fact that the former provides a unique date/time metadata attribute known as dtime26or deletion
time [20, 24, 28 and 29]. No other known UNIX filesystem supports this specific attribute.
Unfortunately, none of the tools listed in Section 2.6 actually supports the dtime attribute, thereby
requiring that this metadata be extracted using custom software or manually with a hex editor.
Irrespective of the dtime attribute, these filesystems support the mtime, atime and ctime attributes
due to their reliance on the UNIX stat() system [29, 30].

According to C library file sys/stat.h and its dependencies, ctime denotes a change in a file’s
status, which occurs whenever a file’s contents are changed or modified. However, ctime
modifications also occur when there is a change to a filesystem object’s metadata status,
including changes to file permissions, file ownership, etc. [30]

On the other hand, the mtime attribute is updated whenever there is a change to a file’s contents
and any update to mtime almost always ensures an update to ctime. While this may seem

24 Crtime, or creation time, is native only to the NTFS filesystem [17, 21, 25, 28 and 53].
25 Although FAT is a Microsoft specific filesystem, most modern UNIX-like systems support it

natively.
26 Under Fedora Core 14 64-bit, dtime is defined by C library files linux/ext2_fs.h and

linux/ext3_fs.h.

DRDC Valcartier TM 2011-216 21

confusing, it is important to think about it in terms of data and metadata. Ctime reflects metadata
changes while mtime reflects changes in data. A change made to a filesystem object’s metadata
does not generally change the data physically residing in the filesystem object; however, changes
made to physical data will usually result in changes to the metadata27. More information about
UNIX-based file deletion can be found in Annex A.3, tables 7 and 8. [20, 24 28, 29, 30, 32, 33
and 34]

In order to improve filesystem performance, some UNIX operating systems, including Solaris and
Linux, allow the system administrator to disable filesystem access time updates (atime) on both
directories and files [29, 30 and 40]. Under Linux, this is accomplished on many supported
filesystems including FAT, NTFS, Ext2/3/4, XFS, JFS, RFS, UFS1/2, etc., using the nodiratime28
and noatime29 mount options [29, 40]. Other UNIX operating systems may use the same or
similar mount options.

UNIX file date/time and metadata is stored in epoch time and as such is not time-zone dependent.
The date/time metadata is presented to the investigator in UTC and converted by various
date/time handling software into local time. Thus, whatever actual time a given file has, it will
always be treated uniformly. [34]

3.3.3 MAC times under Windows

3.3.3.1 FAT-based MAC times

The FAT filesystem has been around for many years and is a well-documented filesystem [19, 22,
23 and 28]. It is similar to UNIX filesystems with respect to its date/time metadata attributes for
both files and directories. It too only uses mtime, atime and ctime. However, FAT’s atime
metadata attribute can only be expressed by date but without any time-specific information30 [17,
19, 22, 23 and 28].

It is important to note that the FAT filesystem is not a highly time-accurate filesystem.
Specifically, mtime or ctime metadata written to the filesystem are likely to be inaccurate because
FAT-based mtime and ctime entries may be off in time by upwards of one or more minutes. It is
also important to note that FAT time is locally based and therefore does not preserve any UTC
context. As such it is entirely dependent on the suspect system’s geographical location. [19, 22,
23 and 28]

3.3.3.2 NTFS-based MAC times

The most commonly examined filesystem today is NTFS, as it is the default filesystem for all
versions of Windows since Windows NT [21, 25, 28 and 53]. However, it is also the most
complex filesystem in use today due to its excessive internal data structures [21, 25, 28, 45, 46

27 E.g. The file is now larger, smaller, different permissions, etc.
28 nodiratime denotes do not update directory access times.
29 noatime denotes do not update file access times.
30 As such, atime is limited to year, month, day but no time (Hours:Minutes:Seconds) is encoded for

this attribute.

22 DRDC Valcartier TM 2011-216

and 53]. The NTFS file metadata structure is very different from other filesystems, especially
UNIX-based filesystems, which rely on inodes or extents [20, 24, 26, 27, 28, 29, 32, 33, 35, 37,
38 and 41]. NTFS, on the other hand, relies exclusively on the MFT [21, 25, 28, 45, 46 and 53]
and without it the NTFS filesystem is rendered useless. Nonetheless, the NTFS filesystem does
make use of extents [53].

Under NTFS, every file and directory has an MFT entry, however, ADS streams rely on the MFT
entry of their host files. Moreover, each file and directory has two different MFT date/time-
related entries, specifically the $FILE_NAME and $STANDARD_INFORMATION attributes,
which each contains the file’s or directory’s mtime, atime, ctime and crtime metadata.

The $STANDARD_INFORMATION construct is the primary date/time metadata structure used
both by the operating system and the vast majority of applications. When a file or directory’s
date/time information is queried through the command line using the dir command or through
Windows Explorer, it is the date/time information recorded within
$STANDARD_INFORMATION which is presented to the user. While The Sleuth Kit and some
of the other tools presented in Section 2.6 rely specifically on this date/time structure, others
including analyzeMFT.py31 and ntfsinfo32 can read both. However, timeline analysis is conducted
primarily using $STANDARD_INFORMATION. [21, 25, 28, 42 and 53]

There is one very good reason for using both $STANDARD_INFORMATION and
$FILE_NAME date/time metadata in timeline generation. While the former is the primary
date/time metadata, the latter provides a point of reference against which to verify a given file’s
creation date. This is particularly important to consider if there is evidence or suspicion of
aberrant or malicious filesystem usage as the corroboration between an NTFS object’s
$STANDARD_INFORMATION and its $FILE_NAME date/time metadata may be able to
determine the file’s true creation date. [21, 25, 28 and 53]

It is common today for malicious software and remote attackers to cover their tracks by changing
file dates and times including creation time. These date/time metadata changes are almost always
made to $STANDARD_INFORMATION and not to $FILE_NAME. Thus, when a given file’s
date/time is suspect, its “backup” date/time metadata ($FILE_NAME) can be used as a more
reliable source of the file’s actual creation time. To carry out this analysis, consider the
aforementioned tools analyzeMFT.py and ntfsinfo. [21, 25, 28 and 53]

However, $FILE_NAME-based crtime date/time metadata can sometimes be modified when
basic file operations are performed and as such the investigator must understand this clearly. For
example, when an NTFS-based file is moved to an altogether different NTFS volume, its
$FILE_NAME-based crtime is updated to reflect the current system time. On the other hand, if
the file is copied either to the same or to an altogether new volume, then its $FILE_NAME-based
crtime is again updated to reflect the current system time. However, if the file is only moved
elsewhere on the same NTFS volume then its $FILE_NAME-based crtime remains untouched.
[21, 25, 28 and 53]

31 The program provides MFT crtime-based anomaly detection as of version 1.7.
32 Although this program does not provide bodyfile or TLN output, it is possible through shell

scripting to implement anomaly detection.

DRDC Valcartier TM 2011-216 23

Furthermore, while the $FILE_NAME MFT structure is useful for crtime-related changes, it is
not useful for verifying a file’s actual mtime, atime or ctime as $FILE_NAME’s date/time
metadata is rarely updated. As such, it will likely not reflect date/time metadata changes as they
pertain to file access, modification and change attributes. [21, 25, 28 and 53]

Unfortunately, due largely to its lack of publicly available documentation, the complexity of the
MFT and other NTFS filesystem structures are not well understood; even the best sources of
information fall short [21, 25, 28 and 53]. Some have attempted to study the effects of filesystem
modification and determine the impact on the date/time metadata. For example, consider the
work of Rob Lee33 from the SANS Institute, who attempted to thoroughly understand and work
through the date/time metadata impact of filesystem changes and which can be found in Annex
A.3, tables 5 and 6 [16]. Then compare said studies against those of Brian Carrier, which can be
found in Annex A.3, tables 7 and 8 [28]. Upon examining the aforementioned tables, confusion
ensues, thus leaving the reader and the authors wondering who was right, Lee or Carrier. For this
reason, additional research must be made into NTFS filesystem modifications and their
impending date/time metadata consequences.

Further exacerbating the problem with NTFS is that both it and its operating system (Windows)
have continued to evolve but with no documentation specifying what exactly has changed in
NTFS. It is certain that the version of NTFS now in use under the latest incarnations of Windows
is not the same as the original version, which first came about in the early 1990s. Without any
publicly available specification, it is not possible to definitively determine which changes have
occurred without reverse engineering the filesystem. Moreover, Windows conceals its underlying
functionality from the programmer through the use of ambiguous APIs and ABIs.

3.3.4 Final thoughts

Most of the filesystems examined in this section have an easy to comprehend date/time metadata
structure. For some which have publicly available specifications, including FAT, Ext2/3/4 and
RFS, they are readily understood. Other UNIX-based filesystems which lack publicly available
specifications instead provide source code which can be studied in order to piece together their
functionality and capability, which includes filesystems such as XFS, JFS and ZFS. Specific
academic references exist which provide the investigator with sufficient details concerning
filesystem internals that he will undoubtedly comprehend its functioning, which includes
filesystems such as UFS1/2 and VxFS. In short, these filesystems can be sufficiently well
understood by an investigator that he can, upon rigorous study, explain them to others, including
a courtroom.

On the other hand, while NTFS is a modern and capable filesystem, it is as far as could be from
FAT or any UNIX filesystem. It has many similarities to OpenVMS’s native filesystem, Files-11
[45, 46]. Reasons exist for these similarities but are outside the scope of this work. Nevertheless,
the excessive complexity of the NTFS filesystem obfuscates features and functionality from the
investigator which he can only begin to comprehend upon studying the source code of various
open source NTFS-based initiatives including the NTFS-3G driver, ntfsprogs and programming
guides such as [25].

33 His work presented in [16] has been presented by an altogether different individual although it is

entirely based on his own work.

24 DRDC Valcartier TM 2011-216

In the opinion of the authors, the underlying features of many filesystems including FAT,
Ext2/3/4, RFS, UFS1/2, VxFS, XFS and JFS can be explained with confidence in a courtroom.
However, without examining the aforementioned sources of information concerning NTFS,
investigator will likely not be able to successfully explain its capabilities and intrinsic features in
court to a literate jury.

3.4 About file permissions

3.4.1 Background

Different filesystems rely on differing methods for securing files and data. Some rely on simple
attributes, many fully support permissions (commonly known as DACLs), others access control
lists (ACLs) and finally, some support extended attributes. Of course, it is entirely possible for a
filesystem to support many or all of the aforementioned permission attribution mechanisms.

It is not generally possible to accurately represent permissions from non-UNIX filesystem objects
while generating a timeline using software originally designed to function under UNIX including
The Coroner’s Toolkit (e.g. grave-robber, mactime), The Sleuth Kit (fls, ils, mactime) and AFF
Fiwalk. However, none of the Windows-capable tools examined in Section 2.6 fares any better at
representing Windows-based filesystem permissions than their UNIX counterparts.

3.4.2 A timeline-based representation of permissions

Although different filesystem permission mechanisms may be at play on a given filesystem, not
all permissions are necessarily mapped into corresponding timeline permissions. It is important
to understand that the specific tools used herein34 to address the generation of enhanced timelines
were not specifically written for Windows or DOS. Instead, they were originally designed for
UNIX-based systems and as such, any timeline generated using the techniques and information
presented herein will use the UNIX-based permission system. UNIX permissions35 are based on
read (r), write (w) and execute (x) for users, groups and the public (e.g. rwx-rw-r-x).

Some permissions are readily mappable to UNIX-based authorizations but most are not. For
example, when considering DOS attributes (see Section 3.4.3 for more details), enabling the read-
only attribute will cause the timeline generation software to set the displayed permissions to read-
only, while all the other attributes will have no effect. However, since DOS files do not record
users or groups (UIDs and GIDs), the timeline generation software will display read-only for both
the file’s group and public permissions. A helpful clarification is in order. Consider the
following examples concerning the various possible DOS attributes for several files:

 Ex. 1) FileA.txt attributes +R +H +S +A

 Interpreted timeline permissions: -r--r--r--

 Ex. 2) FileB.txt attributes: -R +H -S +A

34 The tools used herein are also the most capable as compared to the others presented in Section 2.6.
35 Additional permissions including SUID/SGID and world-writable sticky-bits are not examined.

DRDC Valcartier TM 2011-216 25

 Interpreted timeline permissions: -rw-r--r--

 Ex. 3) FileC.txt attributes: -R +H +S -A

 Interpreted timeline permissions: -rw-r--r--

While DOS attributes are easy to translate to UNIX-based permissions, the additional attributes
provided by NTFS may pose significant translation difficulties. Of course, UNIX permissions are
correctly read and interpreted by the aforementioned software tools (see Section 3.4.1 for more
details). However, ACLs and extended attributes both from NTFS and various UNIX filesystems
cannot be adequately represented by the simplistic permission representation system used by
UNIX. Since The Sleuth Kit and log2timeline are the cornerstones of timeline generation, for this
technical memorandum all permissions will be represented using UNIX-based permissions.
Other non-UNIX software may have different capabilities for representing filesystem object
permissions but they are not examined herein.

3.4.3 Windows filesystem permissions

3.4.3.1 FAT filesystem permissions

The FAT filesystem relies exclusively on file attributes. Specifically, the standard DOS file
attributes are the Hidden (H), System (S), Archive (A) and Read-Only (R) attributes. However,
FAT does not allow for UNIX-style file permissions which set authorizations for groups, users
and the public. Thus, FAT implements a rudimentary permission mechanism. Under DOS,
permissions can be changed using attrib command36. [19, 23, 47 and 48]

Although FAT and DOS do not support any filesystem structure other than files and directories,
other non-DOS operating systems may use modified versions of FAT which allow for a wider
assortment of filesystem structures. Consider that while FAT does not support extended
attributes, this does not stop them from being used by operating systems including OS/2, which
does support FAT-based extended attributes which are stored in a specifically designated file
residing on the FAT-based filesystem in question. However, it is important to note that the
appropriate application of OS/2 FAT-based extended attributes is available only under OS/2
running its proprietary kernel and FAT filesystem driver. [19, 62 and 64]

3.4.3.2 NTFS filesystem permissions

NTFS filesystems support DOS attributes, extended attributes and ACLs [21, 25, 53 and 63].
Windows, like UNIX, is a DACL-based operating system where DACLs are permission-based
and are applied to files and directories (and other system objects) by the user or administrator [21,
25, 47, 50, 53 and 63]. There exist five basic file permissions which are used to configure a given
ACL which are as follows [65]:

 Write
 Read

36 All versions of Windows support this command from a DOS prompt command line window.

26 DRDC Valcartier TM 2011-216

 Read & Execute
 Modify
 Full Control

However, a more fine-tuned set of file permissions are available if required and are as follows
[65]:

 Traverse Folder/Execute File
 List Folder/Read Data
 Read Attributes
 Read Extended Attributes
 Create Files/Write Data
 Create Folders/Append Data
 Write Attributes
 Write Extended Attributes
 Delete Subfolders and Files
 Delete
 Read Permissions
 Change Permissions
 Take Ownership
 Synchronize

Additional permissions are available for non-filesystem objects including the registry, printers,
system services and network shares. All filesystem ACLs can be allocated by users, groups and
other objects such as computers in a domain or Active Directory Organizational Unit. NTFS also
provides ACL inheritance, a feature which enables file and directories to inherit the ACLs of
higher-level directories37. This feature can also be blocked on specific files and directories. [65]

The NTFS filesystem supports several additional filesystem attributes more than DOS. It
supplies the standard Hidden (H), System38 (S), Archive (A) and Read-Only (R) attributes but also
provides at least three other attributes including Indexing (I), Compressed (C) and Encrypted (E).
There may exist additional attributes that are hidden although this can not be confirmed since the
NTFS specification is not public. Two other attributes not visible to the user or administrator
under normal circumstances, even from most software tools, are the Temporary (T) and Offline
(O) attributes [63].

From the command line, most of the filesystem attributes including H, S, A, R and I can be
changed using the attrib program. The others, C and E, can be changed through Windows
Explorer where one or more files or directories can be selectively compressed or encrypted.
Attributes T and I cannot be changed except by very specific software. Interestingly, however,
using the Linux extended attribute modification tools, getfattr and setfattr, it is possible to not
only manipulate all NTFS filesystem attributes but also change all of them [63]. Linux tool
ntfsinfo has the ability to read all NTFS filesystem objects’ attributes but it cannot change them.
The aforementioned tool also does not have ability to read ACLs or permissions.

37 Inheritance can be blocked or set to an altogether different set of ACLs.
38 The presence of this attribute indicates that the filesystem object in question is a link [63].

DRDC Valcartier TM 2011-216 27

ACLs can be set in Windows using command line tools including cacls, icacls, SubInACL and
SetACL [47, 48, 49, 50, 51 and 53]. And of course, all attributes (except T and I) and ACLs can
be set via Windows Explorer.

Although NTFS stores extended attributes, it does not use it for day to day operations. Instead,
they were used in previous versions when Windows maintained compatibility with OS/2, which it
no longer does. However, the extended attribute structures appear to have remained although
what purpose they serve today is not entirely certain. [21, 53, 62 and 63]

3.4.4 UNIX filesystem permissions

UNIX and Linux file permissions are simple in comparison to NTFS’ approach to permissions as
examined in the previous subsection. Universally implemented by all modern UNIX-like systems
are three basic permissions: Read (r), Write (w) and Execute (x). These permissions are
applicable to almost all filesystem objects including files, directories, pipes, sockets, devices, etc.
The only notable exceptions concern file and directory links and certain kernel objects which are
generally not permission-settable, even by the root user. [29, 30, 31, 47, 50, 54 and 55]

File permissions asides, inodes (or their equivalent filesystem structure) are used to store the
filesystem object type. For example, consider that a standard UNIX filesystem can accommodate
various types of objects including files, directories, links, sockets, pipes, etc. Each of these
different classes of objects can be created using the appropriate commands. For example, to
create a system device consider using the mknod system command can be used. To create pipes,
the command mkfifo is used; to create sockets the command mksock is used and to create links,
the ln command is used. Regular files and directories can be created using many commands but
they are commonly generated using the touch and mkdir commands, respectively. These
commands work on all modern UNIX systems and their respective filesystems.

Each filesystem object’s file type can be determined by looking at the first character of each line
when carrying out a long file listing using the command ls -l. Knowing the specific type of file to
search for, an investigator can readily seek it out39. Consider the following file type designations:

Table 1. Differentiating file type designation.

File listing File type designation
-rw-rw-r-- “-” denotes ordinary file
drwxr-xr-x “d” denotes directory
lrwxrwxrwx “l” denotes link
prw-rw-rw “p” denotes FIFO/pipe
srwxr-xr-x “s” denotes socket
crw-rw-rw “c” denotes character device
brw-rw-rw “b” denotes block device

39 The find command can be used to search out specific object types.

28 DRDC Valcartier TM 2011-216

Permissions are applied to filesystem objects as a means of granting or revoking specific
authorizations to the object’s owner, groups and regroupings thereof, and the public. Under
UNIX, permissions are normally stored in the filesystem object’s inode or equivalent structure
[26, 27]. The most commonly used tools for setting and reading filesystem object permissions are
the commands chmod and ls, respectively. However, to change an existing object’s owner and
group, the chown and chgrp commands are used, respectively. These commands apply to all
modern UNIX systems and their respective UNIX filesystems.

Several other permission-like structures exist for modern UNIX filesystems and include the
SUID, SGID and sticky bits, which are implemented through the stat() system call and are stored
in the filesystem object’s inode [29, 30, 31, 47, 54 and 55]. Specifically, SUID and SGID
permissions are actually access right flags which enable programs associated with them to run
with the privileges of either the user (SUID) or group (SGID) which set it. Sticky bits are another
type of access rights flag which when set, allows users to modify files or directories which they
normally would not be authorized to (e.g. /tmp).

However, when the simple permission setting mechanisms of UNIX often do not suffice for
adequately securing a system, a more fine-tuned approach is accomplished using ACLs [29, 30,
31 and 50]. ACLs use standard UNIX permissions and grant additional authorizations (r, w, x) to
additional users, groups or the public, all of which are stored in a filesystem object’s inode (or
equivalent structure). Multiple ACLs can be applied to a filesystem object but different
filesystems may place specific limitations as to how many are permitted for any given object.

Under Linux, ACLs are set using the setfacl command and can be read using the getfacl
command. Getting a specific filesystem to work with ACLs under Linux may require it to be
mounted with appropriate mount options however. Since most modern UNIX systems implement
ACLs, it is important to understand how to read and set them under Linux. The reading and
setting of ACLs under Linux works for some filesystems and not for others. For Extended-based
filesystem, reading and setting ACLs is fully functional. Other Linux filesystems vary in their
ability to support ACLs although the authors have confirmed through experimentation that
Ext2/3/4, XFS, JFS and Btrfs fully support ACLs under Linux.

DRDC Valcartier TM 2011-216 29

4 Timeline formats

4.1 Background

Although there is no industry accepted timeline format or standard, two have risen above the rest.
The first of these two standards is the Bodyfile and Mactime standards which were put forward
by Dan Farmer and Wietse Venema of The Coroner’s Toolkit some years ago and continued on
by Brian Carrier of The Sleuth Kit. The second standard, TimeLiNe (or TLN), is relatively recent
and was put forward by Harlan Carvey. Both formats contrast against one another with respect to
the information they convey based on the specific fields found in each of these formats. Another
timeline format deserves mention as it is beginning to catch, the Common Exchange Format, or
CEF.

It is important to note that while the Bodyfile is a preliminary timeline its counterpart, Mactime,
is an intermediate timeline format. So to are the TLN and CEF timeline formats. Intermediate
timeline formats are not only entirely text-based but are also human-readable and thus can be of
use to the investigator in their current format. However, in the opinion of the authors, they are
not yet suitable for use as a final timeline format.

From the point of view of this technical memorandum the ultimate objective is not only a human-
readable text-based timeline but one which is legible and readily understandable. The authors
accomplish this using the Bodyfile timeline format which is then converted to the Mactime
format using the mactime tool; this format is the reformatted using scripts to prepare it for use as
a finalized timeline format. This final timeline format, as proposed by the authors, is by no
means ideal for all situations although the authors hope that investigators, through the use of
simple scripts can reformat timeline output to suit their own specific requirements and that the
authors’ proposed format can serve as a basis for future custom timeline formats.

In this section several subjects are examined. The first, examined in Section 4.2.1, examines the
preliminary timeline format, specifically the Bodyfile format (Section 4.2.1.1). An example is
included of the Bodyfile format so that reader can better understand why this is a preliminary
format and not an intermediate form (Section 4.2.1.1.1).

This is followed by an examination of various intermediate timelines formats including the TLN,
CEF and the Mactime timeline formats in Section 4.2.2. However, an example timeline output is
only provided for the Mactime timeline format. Example outputs for other formats are not
provided herein as the authors do not consider them appropriate for filesystem-based timeline
analysis.

The authors refer to the aforementioned formats as preliminary and intermediate formats because
although they are comprehensible (TLN, CEF and Mactime more so than the Bodyfile format)
none should be used as a final timeline format as they all are missing important identification
markers such as disk image name and improved field demarcation. Examples of these
identification markers can be found in the authors’ proposed timeline format in Section 4.2.3.1.

30 DRDC Valcartier TM 2011-216

The authors’ proposed final timeline format, based on the Mactime timeline format, can be found
in Section 4.2.3. The example output from the authors’ proposed final timeline format was
generated using the proposed and included prototype found in Annex B.

4.2 Examination of the various timeline formats

This section will examine the various types of timelines formats.

4.2.1 Preliminary timeline format

A preliminary timeline format, as the authors define it, is a text-based timeline which is beyond
that of the raw filesystem metadata presented by various tools but which is not yet highly legible
due to the need to convert the various time metadata into a more human-readable format and re-
arrange the various data in order to improve its understandability. Preliminary timeline formats
are generally converted to another format such as Mactime, TLN or CEF for improved legibility.

The reason the Bodyfile format is the only preliminary timeline format examined herein is
because it is the only such type of timeline format in widespread use. The Bodyfile timeline
format is primarily generated by The Sleuth Kit compatible filesystem metadata processing tools,
although other non-compatible tools may also use a similar Bodyfile-like encoding scheme.

In general, preliminary timeline formats such as the Bodyfile cannot stand alone as they are
readily legible or understandable by either the reader or the authors.

4.2.1.1 Bodyfile timeline format

The first Bodyfile format was used by The Sleuth Kit versions 1.x and 2.x and The Coroner’s
Toolkit both of which today are considered obsolete and should no longer be used. The second
format is the newer one. It is only used by The Sleuth Kit version 3.x and other compatible tools
including log2timeline, ex-tip, etc.40

Herein, only the more recent Bodyfile format (version 3.x) is examined as it is relevant to the
various versions of The Sleuth Kit 3.x currently in use [15]. Furthermore, it is more succinct than
its predecessors (versions 1.x and 2.x), which were based directly on the original Bodyfile
standard put forward by Farmer and Venema [10, 11] and generated using The Coroner’s Toolkit
grave-robber tool. At any rate, the old Bodyfile timeline format was specifically designed for
UNIX filesystems and metadata and was not well-suited for the more generalized approach
necessary for examining non-UNIX filesystems (e.g. NTFS and FAT) [10, 11]. The newer
Bodyfile format extracts only the appropriate filesystem metadata necessary to generate a
meaningful digital timeline while supporting disparate filesystems.

The tools used to generate a Bodyfile from The Sleuth Kit (version 3.x) include fls, ils and mac-
robber. The output of these tools uses the following Bodyfile format [15]:

40 See Section 2.6 for a more concise listing of which timeline generation tools support The Sleuth

Kit’s Bodyfile format.

DRDC Valcartier TM 2011-216 31

MD5 | name | inode | mode_as_string | UID | GID | size | atime | mtime |
ctime | crtime

The first of the above fields is the MD5 hash of the filesystem object in question, which is not
actually carried out by any of the aforementioned tools. This should be done by the investigator
through the use of scripting and its usage is not required in this technical memorandum. Third-
party software can be used to generate MD5 hashes and include md5sum, md5deep and others. It
is useful to note that The Coroner’s Toolkit Bodyfile generating tool, grave-robber, actually
generates MD5 hashes of filesystem objects by calling an external MD5-hashing program.

Each line of output represents one specific filesystem object which is generally a file but could
also be a directory, link, pipe, socket or device.

The second field is the filesystem object’s name (e.g. C:\Windows\explorer.exe). The inode field
is the specific filesystem inode or metadata address which stores the position of the filesystem
object (recall that inodes are filesystem pointers).

The mode_as_string field corresponds to the UNIX permissions of the filesystem object. If the
filesystem is a non-UNIX filesystem then the permissions are mapped to UNIX permissions.
The object’s type (file, directory, link, etc.) will also be specified in the mode_as_string field.

The UID and GID fields correspond to the user and group IDs of the filesystem object,
respectively. While decoding UID and GID using mactime, it is possible to specify a password
file (e.g. /etc/passwd) for converting these values into real system user and group names.
However, the use of a Windows SAM type file will not work for UID and GID conversion.

The size field corresponds to the number of bytes the filesystem object has actually been allocated
on the filesystem.

The atime, mtime, ctime and crtime fields all correspond to the various MAC time filesystem-
based entries for the given filesystem object, each of which is stored using UNIX Epoch time
[34]. These MAC times were examined in Section 3.3. Additional information concerning
various user and system-related actions and their effects on date/time metadata as well as MAC
time modifications can be found in Annex A.3.

However, in order to generate a Bodyfile from the fls or ils tools, it is necessary to specify the
appropriate parameters to either program. On the other hand, the mac-robber program does not
require any parameters beyond a listing of which specific directories to scan in order to generate a
Bodyfile.

4.2.1.1.1 Example Bodyfile output

An example disk image from a Windows Vista Service Pack 2 32-bit computer operating system
disk image was examined using The Sleuth Kit’s fls program. The command used to mount the
disk image was as follows:

 system$ mount -o ro,offset=1048576,loop vista32bit.dd /media/tmp

32 DRDC Valcartier TM 2011-216

This command mounts the disk image vista32bit.dd as read-only onto mount point /media/tmp
using the Linux loop back device /dev/loop0. The command is further instructed to perform the
actual filesystem mount 1,048,576 bytes from the beginning of the disk image.

Using the following fls command, a Bodyfile was generated:

 fls /dev/loop0 -p -a -r -m C: > /tmp/sample.bodyfile

This command instructs the fls program to read from /dev/loop0, where the mounted disk image is
found and display both allocated and deleted entries (-a), including full file path (-p) as well as a
recursive file and directory listing (-r). The -m C: parameters instruct the program to write the
output in Bodyfile format and append the C: prompt to beginning of all output.

The following output41 will help to better understand the aforementioned fls command:

0|C:/autoexec.bat|8559-128-
1|r/rrwxrwxrwx|0|0|24|1162462989|1158615816|1300320467|1162462989

0|C:/config.sys|8560-128-
1|r/rrwxrwxrwx|0|0|10|1162464190|1158615817|1300320648|1162448708

0|C:/Documents and Settings|8563-144-1|d/dr-xr-xr-
x|0|0|48|1162472544|1162472544|1293486419|1162472544

0|C:/Documents and Settings/.|8563-144-1|d/dr-xr-xr-
x|0|0|48|1162472544|1162472544|1293486419|1162472544

0|C:/Documents and Settings/..|5-144-6|d/dr-xr-xr-
x|0|0|160|1300326695|1300326695|1300326695|1162462736

0|C:/PerfLogs|60-144-
1|d/drwxrwxrwx|0|0|144|1200882790|1200882790|1300320470|1200882790

0|C:/PerfLogs/.|60-144-
1|d/drwxrwxrwx|0|0|144|1200882790|1200882790|1300320470|1200882790

0|C:/PerfLogs/..|5-144-6|d/dr-xr-xr-
x|0|0|160|1300326695|1300326695|1300326695|1162462736

0|C:/PerfLogs/Admin|61-144-
1|d/drwxrwxrwx|0|0|48|1200882790|1200882790|1293486410|1200882790

0|C:/PerfLogs/Admin/.|61-144-
1|d/drwxrwxrwx|0|0|48|1200882790|1200882790|1293486410|1200882790

0|C:/PerfLogs/Admin/..|60-144-
1|d/drwxrwxrwx|0|0|144|1200882790|1200882790|1300320470|1200882790

41 Line spacing inserted by authors to improve visibility.

DRDC Valcartier TM 2011-216 33

0|C:/Program Files|62-144-6|d/d-wx-wx-
wx|0|0|280|1300326865|1300326865|1300326865|1162466313

0|C:/Program Files/.|62-144-6|d/d-wx-wx-
wx|0|0|280|1300326865|1300326865|1300326865|1162466313

0|C:/Program Files/..|5-144-6|d/dr-xr-xr-
x|0|0|160|1300326695|1300326695|1300326695|1162462736

0|C:/Program Files/Adobe|32970-144-
1|d/drwxrwxrwx|0|0|256|1293477682|1293477682|1300320470|1293477682

0|C:/Program Files/Adobe/.|32970-144-
1|d/drwxrwxrwx|0|0|256|1293477682|1293477682|1300320470|1293477682

4.2.2 Intermediate timeline formats

Intermediate timeline formats, as the authors have defined them, are text-based human-readable
timelines which are far improved over more basic timelines such as the Bodyfile timeline format.
Most timeline formats do not have precursor timeline formats such as the Bodyfile format.
Moreover, unlike the Bodyfile format which relies on tools such as mactime and log2timeline42 to
convert it into a more readable and useful format, intermediate formats including TLN and CEF
are also considered as final timeline formats. The same can be said for the Mactime format,
although the authors believe that all intermediate formats require additional processing to enable
them to be even more useful and immediately understandable, even by those not fluent in digital
forensics or computer timeline formats. As such, even though the intermediate formats can stand
on their own they can all use improvement.

Consider that for the TLN timeline format, tools such as log2timeline can generate timelines
directly into this format from filesystem metadata and other additional metadata sources fed to it
rather than rely on a transitional format such as the Bodyfile timeline format. The same is true for
the CEF timeline format. However, for reasons to be examined below, it will become clearer
why, at least in the opinion of the authors, why these formats should not be used as finalized
timeline formats even if they can stand on their own.

As for the Bodyfile timeline format, many tools encode directly into this format whereas others
instead encode directly into the Mactime timeline format. The Sleuth Kit, for example, which is
an essential component of filesystem timeline generation for this technical memorandum, encodes
filesystem metadata directly into the Bodyfile timeline format and later requires the mactime tool
in order to convert from this format to the Mactime format, which is more comprehensible than
its predecessor.

However, tools such as log2timeline change things. Not only can they read and parse the
Bodyfile timeline format but it can also export it and other timeline formats to and from other
formats including but not limited to the TLN, Mactime and CEF timeline formats.

42 Log2timeline can parse and export the Bodyfile format to other formats including TLN and CEF,

to name a few.

34 DRDC Valcartier TM 2011-216

In general, all intermediate timeline formats are legible and understandable, whether or not the
readers or the authors consider them to be finalized timeline formats.

4.2.2.1 TLN timeline format

In comparison to the Bodyfile format, the TLN format proposed by Harlan Carvey is simple in
comparison [79, 80]. TLN is a format which is specific to the tools and utilities written by Harlan
Carvey (e.g. regripper, etc.). The present authors propound that Carvey defined his own timeline
format to make the output from his tools more efficient as the Bodyfile format can be
cumbersome to work with [79, 80]. The TLN format is defined as [79, 80]:

Time | Source | Host | User | Description

Time is stored in either UNIX Epoch time or Windows 64-bit time and its use will depend on the
data source (e.g. Windows registry uses Windows 64-bit time while UNIX filesystem object uses
32-bit UNIX time). The source is defined as a brief description of the information source (e.g.
registry, filesystem, EVT/EVTX files, etc.). The host typically defines some information about
the system where the information was found (e.g. system name, DNS name, IP address, MAC
address, etc.). The user is a string providing some description of the user account under which
the information source resided (e.g. system username, Windows SID, e-mail address, etc.).
Finally, the description is a short concise statement of what happened or what was done. [79, 80]

It is important to note that according to Harvey, not all the fields will be filled at all times. The
absence of certain information will depend in part on the data source and the program generating
the timeline. [79, 80]

Although the TLN format is an attractive option in comparison to the Bodyfile format or even the
Mactime timeline format, in the opinion of the authors, it is somewhat lacking in order to be truly
useful in generating forensic timelines. As such, there is little else to examine concerning the
TLN format.

4.2.2.2 Mactime timeline format

Although both The Coroner’s Toolkit and The Sleuth Kit include the mactime tool, they perform
different functions under each suite. The Coroner’s Toolkit’s mactime tool performs the same
task as the mac-robber tool. On the other hand, The Sleuth Kit’s mactime tool converts Bodyfiles
to human-readable text-based timelines which are commonly referred to as Mactime timelines.

Once a Bodyfile output has been generated, The Sleuth Kit’s mactime tool is used to convert it to
the Mactime format by consolidating the various atime, ctime, mtime and crtime metadata into
something more meaningful and convenient for the investigator by providing an easy to read
date/time output. Output from the mactime tool can vary depending on the various command line
parameters fed to the program.

By default, the mactime program will group all filesystem objects found with the same time
together. However, since date and time can be obtained from atime, ctime, mtime or crtime
fields, mactime will regroup objects according to the same date/time regardless of which field that

DRDC Valcartier TM 2011-216 35

date/time is from. Looking at the example default Mactime format output in Section 4.3.2.1 will
clarify the matter.

By default, the output of the mactime tool has the following format [17]:

Date | Size | Type | Mode | UID | GID | Meta | File Name

Many of the fields in the Mactime format output are similar to those found used for the Bodyfile
format. However, several require explanation. The field Type does not refer to file type but
rather refers to the activity type or MAC time (see Section 3.3 for more details). The other item
requiring precision is the field Meta which refers to the metadata address or inode of the
filesystem object in question. [17]

An example of this output is found in the ensuing section below.

4.2.2.2.1 Example of a Mactime timeline output

An example of the default output from the mactime program once it has read in a specified
Bodyfile and generated a human-readable text-based timeline is shown below and was generated
using the following command:

system$ mactime -b bodyfile.txt

Generates the following mactime timeline output43:

Tue Aug 19 1997 02:37:00 15558 m..b r/rrwxrwxrwx 0 0 62452-128-3
C:/Program Files/Common Files/microsoft shared/GRPHFLT/MS.CDR

 6615 m..b r/rrwxrwxrwx 0 0 62453-128-3

C:/Program Files/Common Files/microsoft shared/GRPHFLT/CGMimp32.CFG

 606062 m..b r/rrwxrwxrwx 0 0 62454-128-3

C:/Program Files/Common Files/microsoft shared/GRPHFLT/CGMimp32.FNT

 1908 m..b r/rrwxrwxrwx 0 0 62455-128-3

C:/Program Files/Common Files/microsoft shared/GRPHFLT/MS.CGM

 1069 m..b r/rrwxrwxrwx 0 0 62456-128-3

C:/Program Files/Common Files/microsoft shared/GRPHFLT/MS.GIF

 1061 m..b r/rrwxrwxrwx 0 0 62457-128-3

C:/Program Files/Common Files/microsoft shared/GRPHFLT/MS.JPG

43 Line spacing inserted by authors to improve visibility.

36 DRDC Valcartier TM 2011-216

 1682 m..b r/rrwxrwxrwx 0 0 62458-128-3

C:/Program Files/Common Files/microsoft shared/GRPHFLT/MS.PNG

 1382 m..b r/rrwxrwxrwx 0 0 62459-128-3

C:/Program Files/Common Files/microsoft shared/GRPHFLT/MS.WPG

 15067 m..b r/r-wx-wx-wx 0 0 62467-128-3

...

Wed Jun 24 1998 00:00:00 137000 m... r/rrwxrwxrwx 0 0 33395-128-3
C:/Windows/System32/MSMAPI32.OCX

Mon Jul 06 1998 00:00:00 23552 m... r/rrwxrwxrwx 0 0 33145-128-3
C:/Windows/System32/MSMPIDE.DLL

Tue Jan 26 1999 03:07:36 26 m... r/rrwxrwxrwx 0 0 56164-128-1
C:/Program Files/Jetico/BCWipe/BCVIEW.INI

Wed Apr 14 1999 15:46:54 34705 m..b r/r-wx-wx-wx 0 0 56991-128-3
C:/Program Files/Adobe/Reader 9.0/Resource/Font/SY______.PFB

 75573 m..b r/r-wx-wx-wx 0 0 56992-128-3

C:/Program Files/Adobe/Reader 9.0/Resource/Font/ZX______.PFB

 96418 m..b r/r-wx-wx-wx 0 0 56993-128-3

C:/Program Files/Adobe/Reader 9.0/Resource/Font/ZY______.PFB

 672 m..b r/r-wx-wx-wx 0 0 56995-128-1

C:/Program Files/Adobe/Reader 9.0/Resource/Font/PFM/SY______.PFM

 683 m..b r/r-wx-wx-wx 0 0 56996-128-1

C:/Program Files/Adobe/Reader 9.0/Resource/Font/PFM/zx______.pfm

 684 m..b r/r-wx-wx-wx 0 0 56997-128-1

C:/Program Files/Adobe/Reader 9.0/Resource/Font/PFM/zy______.pfm

As can be seen from this example, filesystem objects are grouped according to their date/time.
This feature can be useful but it is a significant impediment when attempting to perform grep-
based searches against the timeline.

However, generating Mactime timelines using different command line parameters can have the
effect of date/time stamping each entry such that they can be more readily examined for patterns
using grep (or another similar tool).

DRDC Valcartier TM 2011-216 37

4.2.2.3 Other potential timeline formats

Although one or more of the following potential timelines could have been chosen for the work
and prototype proposed herein over the Mactime timeline format, since this work is primarily
concerned with disk-based Windows images broader scope timeline formats such as CEF are not
particularly applicable. The other possible timeline formats have no particular merits over the
Mactime timeline format

4.2.2.3.1 CEF – the Common Exchange Format timeline format

This format is a relatively unknown newcomer to the timeline format space. The Common
Exchange Format or CEF as it is known by, was proposed by ArcSight Inc. Its format is not
particularly different from that of the TLN or Mactime timeline formats. However, it supports
many more field types than either of the aforementioned formats. And although it was designed
for the enterprise management of log and event generating software and devices such as AV
command consoles, IDS and NIDS systems, it could also be used for generating filesystem-based
timelines. However, this format has far too many fields to describe herein in a concise manner
and as such it is not examined in-depth in this work. [83, 84]

It is the opinion of the authors that the CEF timeline format is best left for use with log and event
generating systems and devices. This format can and should be used for timeline analysis of
network based events and data garnered from data sources including PCAP-based network logs,
Squid network logs, Windows firewall logs, Windows ISA Proxy logs, Apache web server logs
and Microsoft IIS logs, all of which can be processed by log2timeline and exported to another
format. [66, 68, 83 and 84]

4.2.2.3.2 TLNX – TLX XML

This timeline format is an XML representation of the TLN timeline format. This format is not
currently in high use and as such it is not examined in this work.

4.2.2.3.3 CSV – Comma Separated Values

This timeline format can be readily generated by log2timeline but it can also be generated by the
mactime tool using the -d command line option. CSV data files are especially used for importing
data into spreadsheets and databases and as such may be of use to investigators requiring the
important of timeline specific data which is to be stored within such a system. However, this
format due to its simplicity, is very easy to understand upon visual inspection of a given CSV
data file, which is why it is not examined in this work.

4.2.2.3.4 SIMILE

The SIMILE timeline format is an XML representation of timeline data which is for the exclusive
use of the SIMILE timeplot widget. Refer to Section 2.6 for more details.

38 DRDC Valcartier TM 2011-216

4.2.3 Authors’ proposed enhanced Mactime timeline format for use as a
final timeline layout

Although the authors could have chosen to work with any of the aforementioned timeline formats
they have chosen to concentrate their efforts on the Mactime timeline format because it is, in the
opinion of the authors, not necessarily the superior format but certainly one of the most
commonly used (if not the most commonly used44). Moreover, because The Sleuth Kit is the
premier open source-based filesystem analysis tool, a primary objective of the authors was to
remain as close as possible to the standards set for by The Sleuth Kit in order to progress their
own respective works. As such, with an aspiration to share their work and in particular their own
take on the Mactime timeline format with a fully functional timeline generation prototype have
undertaken it upon themselves to write this paper and share it with the digital forensics
community. However, the author’s proposed enhanced timeline also makes generous use of the
log2timeline timelines analysis generation software suite due to its expanded data file import, log
analysis, and exportation capabilities.

Although disk image labelling may not be of importance when generating a timeline analysis of
one or several disk images, it is of immense help when working with many disk images. This
becomes all the more significant when performing pattern or date/time distribution analysis
(among many other types of analyses which can potentially be carried out) against numerous disk
images. For this reason, the authors have proposed that each timeline entry be preceded by a disk
image name as is found in Section 4.2.3.2.

4.2.3.1 Proposed timeline format specifics

As all Mactime timeline format output is text-based and field delimited, it is possible to reformat
it into something more meaningful. As such, in the context of this technical memorandum, the
mactime program was instructed to generate a CSV-based timeline which could then be
appropriately formatted in order to emphasize readability. Moreover, the mactime program was
further instructed to convert all time output to EST5EDT which is the time zone from whence
came various test suspect systems originated.

The above mactime timeline output is then piped multiple times into the sed text data processing
utility to remove all non-filesystem object name commas (“,”) and replace them with pipes (“|”)
in order to improve readability and field demarcation.

Thus, while the author’s enhanced Mactime timeline output closely resembles that of the default
Mactime timeline output (see Section 4.2.2.2), they are nonetheless different. The first difference
is that each listed object is preceded by the name of the disk image from whence it originated.
This is then followed by each object being date/time stamped rather than regrouped by a single
date/time stamp. The third is that all date/time output is no longer based on local time but on a
user specified time zone45. Finally, the field delimiter is no longer the tab character (\t) and is
now the “|” character preceded and followed by several spaces to improve readability. The
content itself, however, remains altogether unchanged.

44 Timeline format usage-based statistics are not available at this time from any known source.
45 This must be a valid time zone.

DRDC Valcartier TM 2011-216 39

4.2.3.2 Example of enhanced Mactime timeline format

The following is an example of the enhanced Mactime timeline output. However, this is based
solely on the preferences of the authors and the reader is free to use an altogether different
formatting. Moreover, reformatting is made simple and uniform by using standard UNIX text
and processing tools such as sed and awk.

These awk and sed commands can be found in the timeline control script in Annex B.1. As such,
using these commands a Mactime-based timeline format has been reformatted into a more legible
format as follows below:

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 15558 | m..b |
r/rrwxrwxrwx | 0 | 0 | 62452-128-3 | "C:/Program Files/Common
Files/microsoft shared/GRPHFLT/MS.CDR"

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 6615 | m..b |
r/rrwxrwxrwx | 0 | 0 | 62453-128-3 | "C:/Program Files/Common
Files/microsoft shared/GRPHFLT/CGMimp32.CFG"

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 606062 | m..b |
r/rrwxrwxrwx | 0 | 0 | 62454-128-3 | "C:/Program Files/Common
Files/microsoft shared/GRPHFLT/CGMimp32.FNT"

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 1908 | m..b |
r/rrwxrwxrwx | 0 | 0 | 62455-128-3 | "C:/Program Files/Common
Files/microsoft shared/GRPHFLT/MS.CGM"

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 1069 | m..b |
r/rrwxrwxrwx | 0 | 0 | 62456-128-3 | "C:/Program Files/Common
Files/microsoft shared/GRPHFLT/MS.GIF"

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 1061 | m..b |
r/rrwxrwxrwx | 0 | 0 | 62457-128-3 | "C:/Program Files/Common
Files/microsoft shared/GRPHFLT/MS.JPG"

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 1682 | m..b |
r/rrwxrwxrwx | 0 | 0 | 62458-128-3 | "C:/Program Files/Common
Files/microsoft shared/GRPHFLT/MS.PNG"

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 1382 | m..b |
r/rrwxrwxrwx | 0 | 0 | 62459-128-3 | "C:/Program Files/Common
Files/microsoft shared/GRPHFLT/MS.WPG"

Exploited_PC_disk_image--> Tue Aug 19 1997 02:37:00 | 15067 | m..b | r/r-
wx-wx-wx | 0 | 0 | 62467-128-3 | "C:/Windows/Installer/$PatchCache

In comparison to the default Mactime timeline format presented in Section 4.2.2.2 the authors are
of the opinion that this reformatted output is much improved. The “|” characters, in the opinion
of the authors, serve to improve readability over the default tab character (\t).

40 DRDC Valcartier TM 2011-216

4.3 Reading and processing Mactime-based timeline output

Reading and processing Mactime-based timeline is not difficult because it is text-based and field
delimited. Its legibility can be further improved through the use of customized formatting by
using additional text processing filters and processors (e.g. sed, awk, grep, etc.). When reading a
standard Mactime timeline output, the two most important items to search for are the date/time
and activity type. These two items will allow the investigator to quickly narrow in on specific
types of file activity which occurred at key times of interest.

In so doing, the investigator must be conscientious that filesystem objects are under constant
modification so long as the operating system is operational and the user is accessing and
modifying both system46 and data files. Files constantly undergo changes in name, size, contents
and volume location due to a myriad of reasons such as file updates, service packs, user-induced
data file changes, etc. These changes will affect the date/time metadata (atime, ctime, mtime and
crtime47) of the effected file(s). It is important to recall that the various date/time metadata are
modified whenever a change is made to the file or its metadata (see Section 3.3 for more details).

Thus, over time, it is expected that many filesystem objects will experience normal system and
user-based changes, all of which are reflected in their date/time metadata. For example, consider
the following example output48 which examines the changes which have occurred to the system
file C:\autoexec.bat:

Mon Sep 18 2006 17:43:36 | 24 | m... | r/rrwxrwxrwx | 0 | 0 | 8559-
128-1 | "C:/autoexec.bat"

Thu Nov 02 2006 05:23:09 | 24 | .a.b | r/rrwxrwxrwx | 0 | 0 | 8559-
128-1 | "C:/autoexec.bat"

Wed Mar 16 2011 20:07:47 | 24 | ..c. | r/rrwxrwxrwx | 0 | 0 | 8559-
128-1 | "C:/autoexec.bat"

Understanding the changes that were made to the example file above are not necessarily
straightforward. Different types of file activity will result in varying date/time metadata changes
being recorded. As such, the connection between file activity and date/time metadata changes are
readily perceived. However, in order to attempt to identify which file activities resulted in the
recorded date/time metadata change sought after by the investigator, some investigative work
may be required. It is useful to recall that all file activities (under NTFS there are four MAC
times) are recorded in the date/time metadata of the filesystem object in question. Using the
information prepared in Annex A.3 which is up to date, the investigator can attempt to recreate
events leading up to specific file activities and date/time changes.

46 The user may be able to modify system files only if he has permissions to do so or if permissions

are enforced by the operating system. Even if the user cannot modify system files, his actions
while using the system are likely recorded by the system event logger (and system auditor, if
enabled).

47 NTFS only metadata.
48 Line spacing inserted by authors to improve visibility.

DRDC Valcartier TM 2011-216 41

Unfortunately, in many cases, disparate file activities will have the same end result as far as
date/time metadata changes are concerned. Thus, at times the investigator cannot be absolutely
certain that a given set of file changes resulted in the associated date/time metadata changes.
There is nothing that can be done about this due to the use of current filesystem data structures
necessary, which despite their deficiencies are required for recording various date/time metadata
activities. If only additional filesystem metadata structures existed which could be used to
accommodate the plethora of present filesystem object-based activities then it would be possible
to discern with far greater precision which actions led to the current state of said metadata
structures.

Regrettably, no known filesystem actually implements sufficient filesystem metadata structures.
Even NTFS with its vast array of MFT metadata structures still can still leave the investigator
pondering which activity led to the present date/time metadata values found in said structures (see
Annex A.3 for more details).

Further hampering the situation is the use of the currently accepted MAC times (a.k.a. MACB
times). Currently, MAC time support for all filesystems is limited to atime, ctime, and mtime,
with the notable exceptions of NTFS and Ext2/3/4. NTFS supports atime, ctime, mtime and
crtime [21, 25, 28, 42, 45, 46 and 53] while Ext2/3/4 supports atime, ctime, mtime and dtime [20,
24, 28, 29, 30, 31, 32, 33 and 41]. However, The Sleuth Kit (and all other filesystem-based
timeline tools) does not currently provide MAC support for dtime, only NTFS’ crtime.

Consider this final example output49. The file C:\Windows\System32\ntdll.dll, a very important
system file for Windows operating systems, has undergone at least the following file activity
changes from a test Windows Vista operating system disk image.

Sun Jan 20 2008 21:25:27 | 1203792 | ma.b | r/rrwxrwxrwx | 0 | 0 |
17730-128-3 | "C:/Windows/System32/ntdll.dll (deleted-realloc)"

Fri Oct 15 2010 09:48:59 | 1205080 | m... | r/rrwxrwxrwx | 0 | 0 |
50827-128-4 | "C:/Windows/System32/ntdll.dll"

Mon Dec 27 2010 14:07:01 | 1203792 | ..c. | r/rrwxrwxrwx | 0 | 0 |
17730-128-3 | "C:/Windows/System32/ntdll.dll (deleted-realloc)"

Sat Feb 12 2011 14:02:44 | 1205080 | .a.b | r/rrwxrwxrwx | 0 | 0 |
50827-128-4 | "C:/Windows/System32/ntdll.dll"

Sat Feb 12 2011 15:50:45 | 1205080 | ..c. | r/rrwxrwxrwx | 0 | 0 |
50827-128-4 | "C:/Windows/System32/ntdll.dll"

Attempting to recreate the file activities which resulted in the date/time metadata changes being
recorded is even more challenging than for the file activities associated with the file
C:\autoexec.bat.

49 Line spacing inserted by authors to improve visibility.

42 DRDC Valcartier TM 2011-216

4.4 A final point about UNIX data processing

UNIX text and data processing utilities can be used to not only better format the mactime timeline
output but can be used to pull out specific dates, names, permissions, file types, file activity, etc.
Using the grep utility, it will be possible to perform multiple word and pattern searches in one
pass. The sort utility can be used directly on the timeline or its pre-processed output from another
tool (e.g. grep), all of which can be sorted according to various criteria. The uniq tool is
generally used to remove duplicate lines but it can also be used to add up the number of times a
given keyword or date occurs in an output.

Another very powerful scripting tool is the awk utility which can be used to not only reformat
timelines and other output, but through awk programming, the investigator can create self-
contained programs to perform additional work and data processing including pattern searching
and analysis. The final text and data processing tool which the authors find to be of use when
working with timelines is the tr command, which is a character translation tool and can replace
one or more characters by another set of one or more characters and is useful for troublesome
filename characters and field delimiters (e.g. “$”, “@”, etc.).

All these capabilities may take some time for the investigator to adjust to, but can be of immense
value, particularly when dealing with very large timeline analyses.

DRDC Valcartier TM 2011-216 43

5 Examining timeline-based sources of information

5.1 Background

In this section, the sources of date/time metadata available for inclusion in a digital timeline by
the software tool log2timeline are examined as are the actual sources of data used by the authors
in their digital timeline analysis implementation (see Annex B.1 to examine the control script in
more detail).

5.2 Sources of date/time metadata

5.2.1 Sources available through log2timeline

According to [66], the current version of log2timeline, version 0.52, supports the following
sources of date/time metadata:

 Apache2 access logs
 Apache2 error logs
 Google Chrome history
 Encase directory listings
 Windows event log files (EVT)
 Windows event log files (EVTX)
 EXIF information or metadata from various media files
 Firefox bookmarks
 Firefox 2 history
 Firefox 3 history
 FTK Imager directory listing CSV files
 Generic Linux log file
 Internet Explorer history files, parsing index.dat files
 Windows IIS W3C log files
 ISA server text export (copy query results to clipboard and into a text file)
 Mactime Bodyfiles (to provide an easy method to modify from mactime format to some

other)
 McAfee AntiVirus log files
 MS-SQL error logs
 Opera global and direct browser history
 OpenXML metadata (for metadata extraction from Office 2007 and 2010 documents)
 PCAP files (parsing network dump files created by tool such as Wireshark and Tcpdump)
 PDF (parse the basic PDF metadata to capture creation dates, etc. from PDF documents)
 Windows Prefetch directory
 Windows Recycle Bin (INFO2 or I$)
 Windows Restore Points
 Safari Browser history files

44 DRDC Valcartier TM 2011-216

 Windows XP SetupAPI log files
 Adobe Local Shared Object files (SOL/LSO) (a.k.a. Flash Cookies)
 Squid Access Logs (httpd_emulate off)
 TLN (timeline) Bodyfiles
 UserAssist key of the Windows registry
 Volatility (based on the output file from the psscan and psscan2 modules from volatility)
 Windows Shortcut files (LNK)
 Windows WMIProv log files
 Windows XP Firewall Log files (W3C format)

And it supports the following timeline formats [66]:

 BeeDocs
 CEF
 CFTL
 CSV
 Mactime
 SIMILE
 SQLite
 TLN (CSV and tab (“\t”) delimited formats both supported)

Although a typical Windows operating system disk contains a multitude of date/time metadata,
not all sources are necessarily useful. Incorporating too many sources of information may cause
the investigator to experience information overload. This risk becomes all the more important as
the number of metadata sources increase. It is for this reason that the investigator, in the opinion
of the authors, must plan ahead of time with respect to which metadata sources are considered
important to his investigation.

Moreover, although it may seem appropriate to extract and include all EXIF information
wherever found, this is generally not a good idea, again mainly due to potential of information
overload. If geo-location information50 is required then EXIF metadata extraction is a must. [82]

Many of the aforementioned data sources are likely not pertinent to a specific investigation and as
such should not be considered for inclusion in a digital timeline.

The one problem with “one-stop-shop” programs such as log2timeline is that they require that the
investigator specify a listing a files to extract date/time metadata from. This requires that
investigator know where these files reside or have the ability to find these files. This is where
programs such as the find and file command become very useful.

50 Cameras and cell phones can store geo-location information in images and videos. Other data

types likely exist.

DRDC Valcartier TM 2011-216 45

5.2.2 Sources used and implemented in the proposed timeline
extraction framework

As implemented by the control script written by the authors, the timeline extraction and analysis
framework (see Annex B.1), searches a given raw disk image for some file types using the find
and file commands. Other file types which are known either by specific filename or location are
instead fed directly to the log2timeline program. And in other cases, where the filename, location
or file command-based signature is unknown, author-provided signature detection software are
used to locate the desired files and feed them to log2timeline.

Thus, the author-provided prototype script (see Annex B.1) relies not only on various shell
commands, but The Sleuth Kit, log2timeline and an author-provided and developed signature
detection program (see Annex B.2.2). The various shell commands used by the script include but
are not limited to file, find, tr, cpio, sed, grep and awk.

As carried out herein, based on the abilities of The Sleuth Kit, log2timeline and the specific needs
of the authors concerning their own investigations, the following sources of time-based metadata
are extracted from a given disk image which is carried out by the proposed prototype in Annex B:

 Allocated filesystem objects
 Implemented using The Sleuth Kit

 Deleted filesystem objects
 Implemented through The Sleuth Kit

 Undeletable filesystem objects
 Implemented using The Sleuth Kit

 Windows registry objects
 Implemented using Harlan Carvey’s regtime.pl Perl script

 Windows event logs (EVT51 and EVTX formats)
 Implemented using log2timeline

 Windows prefetch files
 Implemented using log2timeline

 Windows system restores
 Implemented using log2timeline

 Windows shortcuts
 Implemented using log2timeline

 Windows Internet Explorer history files
 Implemented using log2timeline

 Firefox 352 history files

51 The control script, which uses the file command to find the various data types which are fed to

log2timeline cannot detect Windows EVT logs (Windows XP, 2000, and NT) and as such requires
the use of an byte signature detection program, find_eventlog_signature.c (see Annex B.2.2 for
more information), to find them.

46 DRDC Valcartier TM 2011-216

 Implemented using log2timeline

 Windows Setupapi logs
 Implemented using log2timeline

 Windows firewall logs
 Implemented using log2timeline

 Flash cookies
 Implemented using log2timeline

5.3 How the control script works

The control script, timeline.sh, as seen in Annex B.1 is relatively straightforward. The script
requires that the user provide as input five distinct items on the command line when initiating the
script in order for it to begin processing a disk image for timeline analysis. These items, in their
correct order, are:

 Timeline repository location
 Filesystem offset
 Disk image or evidence file name
 Mount point
 Partition number

The first item specifies an existing directory where all timeline files, generated or processed, are
to be stored. The existing directory has a new directory appended to it, timeline/. The filesystem
offset specifies how many bytes the actual filesystem is from the partition table which defines it.
The disk image or evidence file name is the actual raw disk image which contains the
filesystem(s) to be analysed. This image must be uncompressed and in a raw format as it will not
process other formats53. Once the disk image has been found to exist, it is then mounted on the
command line specified mount point. Finally, the user specifies which partition is to be worked
on by the script so that it can append the appropriate partition number to timeline repository.
Once complete, the processing then begins.

The first data processing requires The Sleuth Kit. All allocated disk image filesystem objects are
analysed. Then all deleted and undeletable files are analysed. All appropriate filesystem
metadata is then in stored using the Bodyfile timeline format which is then converted to the
Mactime timeline format.

Once complete, various Windows-specific file types are sought out, including but not limited to
the Windows registry, event logs, etc (see Section 5.2.2 for more details). Only the Windows
EVT logs cannot be readily found. Instead, the use of a specific byte signature detection program
is required.

52 Firefox is currently at version 6.0. All versions as of version 3.0 use a SQLite database for storing

browsing history and related information. Although log2timeline supports Firefox version 2.x web
browsing history it is not support by the proposed timeline extraction framework since it is very
outdated.

53 Non-raw formats may include EnCase’s disk format, the AFF disk format and others.

DRDC Valcartier TM 2011-216 47

Then some basic UNIX text and data processing is carried to concatenate all the variously
extracted date/time timeline data files into one final timeline data file. Each timeline entry is then
preceded by the disk image name from whence it came so that when the investigator combines
together all the final timelines from all the various disk images together pattern and distribution
analysis will be highly simplified when discerning which event occurred on what filesystem and
disk.

Finally, the disk image is unmounted and the script terminates. If there are multiple disk images
or partitions to analyse the investigator has only to provide the appropriate information on the
command line. The investigator could even use another script which provides all the necessary
information to the control script in order to instantiate one or more timeline processing instances.
Very powerful workstations with high disk I/O could even instantiate simultaneous control script
instances of multiple disk images.

5.4 Sample output

In this section, the various date/time metadata sources used by the authors’ control script (see
Annex B.1), upon having been converted to suitable final timeline format, are examined in the
subsections below.

5.4.1 Allocated filesystem objects

The following is a sample of a final timeline output for various allocated filesystem objects:

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@statsdlg/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@subsysDataLogsNode/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@timedata/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@timeFromWorkspaceDlg/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@timeplot/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@timereset/.."

48 DRDC Valcartier TM 2011-216

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@timeview/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@transaction/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@tsCharLineView/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@tsCharVarView/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@tscollectionNode/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@tscorrnode/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@tshistnode/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@tsImportdlg/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@tsMeanData/.."

exploited.dd--> 2006 04 26 Wed 15:29:23 | 56 | m.c. | d/drwxrwxrwx | 0 | 0
| 249833-144-6 | "/Program Files/MATLAB/R2006a/toolbox/matlab/timeseries
@tsguis/@tsMeanView/.."

5.4.2 Deleted filesystem objects

The following is a sample of a final timeline output for various deleted filesystem objects:

exploited.dd--> 2008 09 29 Mon 09:40:05 | 10 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714521-128-1 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG/
igweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ/asbs111[39].js
(deleted)"

DRDC Valcartier TM 2011-216 49

exploited.dd--> 2008 09 29 Mon 09:40:05 | 10 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714522-128-1 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG
bigweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ/asbs111[3].js
(deleted)"

exploited.dd--> 2008 09 29 Mon 09:40:05 | 10 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714523-128-1 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG/
igweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ/asbs111[4].js
(deleted)"

exploited.dd--> 2008 09 29 Mon 09:40:05 | 10 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714525-128-1 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG/
igweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ/asbs111[6].js
(deleted)"

exploited.dd--> 2008 09 29 Mon 09:40:05 | 10 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714526-128-1 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG/
igweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ/asbs111[7].js
(deleted)"

exploited.dd--> 2008 09 29 Mon 09:40:05 | 10 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714527-128-1 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG/
igweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ/asbs111[8].js
(deleted)"

exploited.dd--> 2008 09 29 Mon 09:40:05 | 10 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714528-128-1 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG/
igweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ/asbs111[9].js
(deleted)"

exploited.dd--> 2008 09 29 Mon 09:40:05 | 11514 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714529-128-4 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG/
igweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ
astro_r02_c11[1].jpg (deleted)"

exploited.dd--> 2008 09 29 Mon 09:40:05 | 12129 | .ac. | -/rrwxrwxrwx | 0 | 0 |
714530-128-4 | "/weiner/oldcomputer/Documents and Settings/bigweiner.TBG/
igweiner/Local Settings/Temporary Internet Files/Content.IE5/UJYVY1IJ/
stro_r03_c01[1].jpg (deleted)"

5.4.3 Undeletable filesystem objects

The following is a sample of a final timeline output for various undeletable filesystem objects:

exploited.dd--> 2009 07 06 Mon 13:31:31 | 3669 | ...b | r/rrwxrwxrwx | 0 | 0 |
982324-128-4 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/CreateAppSetting.aspx"

50 DRDC Valcartier TM 2011-216

exploited.dd--> 2009 07 06 Mon 13:31:31 | 12253 | ...b | r/rrwxrwxrwx | 0 | 0 |
982325-128-4 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/DebugAndTrace.aspx"

exploited.dd--> 2009 07 06 Mon 13:31:31 | 2304 | ...b | r/rrwxrwxrwx | 0 | 0 |
982327-128-4 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/EditAppSetting.aspx"

exploited.dd--> 2009 07 06 Mon 13:31:31 | 15196 | ...b | r/rrwxrwxrwx | 0 | 0 |
982328-128-4 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/ManageAppSettings.aspx"

exploited.dd--> 2009 07 06 Mon 13:31:31 | 17787 | ...b | r/rrwxrwxrwx | 0 | 0 |
982329-128-4 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/SmtpSettings.aspx"

exploited.dd--> 2009 07 06 Mon 13:31:31 | 56 | m.cb | d/drwxrwxrwx | 0 | 0 |
982330-144-6 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/App_LocalResources"

exploited.dd--> 2009 07 06 Mon 13:31:31 | 3806 | ...b | r/rrwxrwxrwx | 0 | 0 |
982331-128-4 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/App_LocalResources/AppConfigHome.aspx.resx"

exploited.dd--> 2009 07 06 Mon 13:31:31 | 1367 | ...b | r/rrwxrwxrwx | 0 | 0 |
982332-128-4 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/App_LocalResources/AppSetting.ascx.resx"

exploited.dd--> 2009 07 06 Mon 13:31:31 | 1539 | ...b | r/rrwxrwxrwx | 0 | 0 |
982333-128-4 | "/BUBB_A/WINDOWS/Microsoft.NET/Framework/v2.0.50727/
SP.NETWebAdminFiles/AppConfig/App_LocalResources/CreateAppSetting.aspx.resx"

5.4.4 Windows registry objects

The following is a sample of a final timeline output for various Windows registry objects:

exploited.dd--> 2010 05 26 Wed 15:07:46 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Enum/PCIIDE/IDEChannel/4&2c5d1230&0&1 "

exploited.dd--> 2010 05 26 Wed 15:07:46 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Enum/Root/dmio/0000 "

exploited.dd--> 2010 05 26 Wed 15:07:46 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Enum/Root/ftdisk/0000 "

exploited.dd--> 2010 05 26 Wed 15:07:46 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Services/Cdrom "

exploited.dd--> 2010 05 26 Wed 15:07:46 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Services/Disk "

DRDC Valcartier TM 2011-216 51

exploited.dd--> 2010 05 26 Wed 15:07:46 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Services/Imapi "

exploited.dd--> 2010 05 26 Wed 15:07:46 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Services/atapi "

exploited.dd--> 2010 05 26 Wed 15:07:46 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Services/redbook "

exploited.dd--> 2010 05 26 Wed 15:07:47 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Control/DeviceClasses/{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}/##?#STORAGE#Volume#1&30a96598&0&Signature2C9EEOffset7E00
Length1C9F7F4600#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b} "

exploited.dd--> 2010 05 26 Wed 15:07:47 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Control/DeviceClasses/{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}/##?#STORAGE#Volume#1&30a96598&0&Signature2C9EEOffset7E00
Length1C9F7F4600#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}/# "

exploited.dd--> 2010 05 26 Wed 15:07:47 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Control/DeviceClasses/{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}/##?#STORAGE#Volume#1&30a96598&0&Signature510D510COffset7
E00Length2542978200#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b} "

exploited.dd--> 2010 05 26 Wed 15:07:47 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Control/DeviceClasses/{53f5630d-b6bf-11d0-94f2-
00a0c91efb8b}/##?#STORAGE#Volume#1&30a96598&0&Signature510D510COffset7
E00Length2542978200#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}/# "

exploited.dd--> 2010 05 26 Wed 15:07:47 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Enum/Root/LEGACY_FLTMGR/0000 "

exploited.dd--> 2010 05 26 Wed 15:07:47 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Enum/Root/LEGACY_MUP/0000 "

exploited.dd--> 2010 05 26 Wed 15:07:47 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Enum/Root/LEGACY_NTFS/0000 "

exploited.dd--> 2010 05 26 Wed 15:07:47 | 0 | m... | 0 | 0 | 0 | 0 |
".//ControlSet001/Enum/Root/LEGACY_SR/0000 "

5.4.5 Windows event logs

The following is a sample of a final timeline output for various Windows event logs:

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

52 DRDC Valcartier TM 2011-216

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

exploited.dd--> 2005 12 12 Wed 19:00:00 copyright SID:FruitLoop
 Message: YouHoo Research | LLC

5.4.6 Windows prefetch files

The following is a sample of a final timeline output for various Windows prefetch files:

exploited.dd--> 2010 05 05 Wed 10:56:24 | 0 | macb | 0 | 0 | 0 | 237978 | "[XP
Prefetch] (Last run) IEXPLORE.EXE-2D97EBE6.pf - [IEXPLORE.EXE] was executed -
run count [1510]- full path: [C:/PROGRAM FILES/INTERNET
EXPLORER/IEXPLORE.EXE] - DLLs loaded: {WINDOWS/SYSTEM32/NTDLL.DLL
- WINDOWS/SYSTEM32/KERNEL32.DLL - WINDOWS/SYSTEM32/MSVCRT.DLL
- WINDOWS/SYSTEM32/ADVAPI32.DLL - WINDOWS/SYSTEM32/RPCRT4.DLL -
WINDOWS/SYSTEM32/SECUR32.DLL - WINDOWS/SYSTEM32/USER32.DLL -
WINDOWS/SYSTEM32/GDI32.DLL - WINDOWS/SYSTEM32/OLE32.DLL -
WINDOWS/SYSTEM32/SHIMENG.DLL -
WINDOWS/APPPATCH/ACGENRAL.DLL - WINDOWS/SYSTEM32/WINMM.DLL

DRDC Valcartier TM 2011-216 53

- WINDOWS/SYSTEM32/OLEAUT32.DLL -
WINDOWS/SYSTEM32/MSACM32.DLL - WINDOWS/SYSTEM32/VERSION.DLL -
WINDOWS/SYSTEM32/SHELL32.DLL - WINDOWS/SYSTEM32/SHLWAPI.DLL -
WINDOWS/SYSTEM32/USERENV.DLL - WINDOWS/SYSTEM32/UXTHEME.DLL
- WINDOWS/SYSTEM32/IMM32.DLL -
WINDOWS/WINSXS/X86_MICROSOFT.WINDOWS.COMMON-
CONTROLS_6595B64144CCF1DF_6.0.2600.5512_X-
WW_35D4CE83/COMCTL32.DLL - WINDOWS/SYSTEM32/COMCTL32.DLL -
WINDOWS/SYSTEM32/RPCSS.DLL - WINDOWS/SYSTEM32/DFRGRES.DLL -
WINDOWS/SYSTEM32/NTMARTA.DLL - WINDOWS/SYSTEM32/SAMLIB.DLL -
WINDOWS/SYSTEM32/WLDAP32.DLL - WINDOWS/SYSTEM32/CLBCATQ.DLL -
WINDOWS/SYSTEM32/COMRES.DLL - WINDOWS/SYSTEM32/XPSP2RES.DLL -
WINDOWS/SYSTEM32/WINSTA.DLL - WINDOWS/SYSTEM32/NETAPI32.DLL -
WINDOWS/SYSTEM32/RDPSND.DLL -
WINDOWS/SYSTEM32/PSAPI.DLLWINDOWS/SYSTEM32/NTDLL.DLL -
WINDOWS/SYSTEM32/KERNEL32.DLL - WINDOWS/SYSTEM32/ADVAPI32.DLL
- WINDOWS/SYSTEM32/RPCRT4.DLL - WINDOWS/SYSTEM32/SECUR32.DLL -
WINDOWS/SYSTEM32/USER32.DLL - WINDOWS/SYSTEM32/GDI32.DLL -
WINDOWS/SYSTEM32/OLE32.DLL - WINDOWS/SYSTEM32/MSVCRT.DLL -
WINDOWS/SYSTEM32/OLEAUT32.DLL - WINDOWS/SYSTEM32/SETUPAPI.DLL
- WINDOWS/SYSTEM32/SHIMENG.DLL -
WINDOWS/APPPATCH/ACGENRAL.DLL - WINDOWS/SYSTEM32/WINMM.DLL
- WINDOWS/SYSTEM32/MSACM32.DLL - WINDOWS/SYSTEM32/VERSION.DLL
- WINDOWS/SYSTEM32/SHELL32.DLL - WINDOWS/SYSTEM32/SHLWAPI.DLL -
WINDOWS/SYSTEM32/USERENV.DLL - WINDOWS/SYSTEM32/UXTHEME.DLL
- WINDOWS/SYSTEM32/IMM32.DLL - …

…

And the list keeps on going for many more lines. It has been shortened for brevity.

5.4.7 Windows system restores

The following is a sample of a final timeline output for various Windows system restores:

exploited.dd--> 2010 02 25 Thu 16:46:14 | 0 | macb | 0 | 0 | 0 | 10143 |
"[Restore Point] (Created) Restore point RP1315 created - System Checkpoint (file:
/media/ntfs//System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903})"

exploited.dd--> 2010 02 26 Fri 01:00:19 | 0 | macb | 0 | 0 | 0 | 10143 | "[Restore
Point] (Created) Restore point RP1316 created - Software Distribution Service 3.0 (file:
/media/ntfs//System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903})"

exploited.dd--> 2010 02 27 Sat 01:08:44 | 0 | macb | 0 | 0 | 0 | 10143 | "[Restore
Point] (Created) Restore point RP1317 created - System Checkpoint (file:
/media/ntfs//System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903})"

54 DRDC Valcartier TM 2011-216

exploited.dd--> 2010 02 28 Sun 02:08:44 | 0 | macb | 0 | 0 | 0 | 10143 |
"[Restore Point] (Created) Restore point RP1318 created - System Checkpoint (file:
/media/ntfs//System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903})"

exploited.dd--> 2010 03 01 Mon 03:08:43 | 0 | macb | 0 | 0 | 0 | 10143 |
"[Restore Point] (Created) Restore point RP1319 created - System Checkpoint (file:
/media/ntfs//System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903})"

exploited.dd--> 2010 03 02 Tue 12:00:27 | 0 | macb | 0 | 0 | 0 | 10143 |
"[Restore Point] (Created) Restore point RP1320 created - System Checkpoint (file:
/media/ntfs//System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903})"

exploited.dd--> 2010 03 03 Wed 15:18:02 | 0 | macb | 0 | 0 | 0 | 10143 |
"[Restore Point] (Created) Restore point RP1321 created - System Checkpoint (file:
/media/ntfs//System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903})"

exploited.dd--> 2010 03 04 Thu 16:20:39 | 0 | macb | 0 | 0 | 0 | 10143 |
"[Restore Point] (Created) Restore point RP1322 created - System Checkpoint (file:
/media/ntfs//System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903})"

exploited.dd--> 2010 03 05 Fri 09:45:30 | 0 | macb | 0 | 0 | 0 | 10143 | "[Restore
Point] (Created) Restore point RP1324 created - Installed Windows 7 USB/DVD
Download Tool (file: /media/ntfs//System Volume Information/_restore{0A1D308C-
5063-4365-9E40-27C41DA5F903})"

5.4.8 Windows shortcuts

The following is a sample of a final timeline output from various Windows shortcuts:

exploited.dd--> 2007 01 22 Mon 13:13:07 | 832 | m... | 0 | 0 | 0 | 87802 |
"[Shortcut LNK] (Modified/Access/Created) C:/Documents and Settings/weiner/My
Documents/Winter2001/George.xls <-/media/ntfs/System Volume
Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106096.LNK- which is stored on a local vol type - Fixed-
SN 0x94492d7f - Rel path: ../../../../My Documents/Winter2001/George.xls [a rel. path
str-SI ID exists-points to a file or dir] - mod since last backup (file: /media/ntfs/System
Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106096.LNK)"

exploited.dd--> 2007 01 22 Mon 13:13:08 | 832 | .a.. | 0 | 0 | 0 | 87802 |
"[Shortcut LNK] (Modified/Access/Created) C:/Documents and Settings/weiner/My
Documents/Winter2001/George.xls <-/media/ntfs/System Volume
Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106096.LNK- which is stored on a local vol type - Fixed-
SN 0x94492d7f - Rel path: ../../../../My Documents/Winter2001/George.xls [a rel. path
str-SI ID exists-points to a file or dir] - mod since last backup (file: /media/ntfs/System

DRDC Valcartier TM 2011-216 55

Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106096.LNK)"

exploited.dd--> 2007 01 22 Mon 13:15:21 | 680 | m... | 0 | 0 | 0 | 88309 |
"[Shortcut LNK] (Modified/Access/Created) C:/Documents and Settings/weiner/My
Documents/Winter2001/Winter2001.xls <-/media/ntfs/System Volume
Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106350.lnk- which is stored on a local vol type - Fixed- SN
0x94492d7f - Rel path: ../My Documents/Winter2001/Winter2001.xls Working dir:
C:/Documents and Settings/weiner/My Documents/Winter2001 [a rel. path str-SI ID
exists-working dir.-points to a file or dir] - mod since last backup (file:
/media/ntfs/System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106350.lnk)"

exploited.dd--> 2007 01 22 Mon 13:37:42 | 680 | .a.. | 0 | 0 | 0 | 88309 |
"[Shortcut LNK] (Modified/Access/Created) C:/Documents and Settings/weiner/My
Documents/Winter2001/Winter2001.xls <-/media/ntfs/System Volume
Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106350.lnk- which is stored on a local vol type - Fixed- SN
0x94492d7f - Rel path: ../My Documents/Winter2001/Winter2001.xls Working dir:
C:/Documents and Settings/weiner/My Documents/Winter2001 [a rel. path str-SI ID
exists-working dir.-points to a file or dir] - mod since last backup (file:
/media/ntfs/System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106350.lnk)"

exploited.dd--> 2007 01 22 Mon 13:47:10 | 680 | ma.. | 0 | 0 | 0 | 20965 |
"[Shortcut LNK] (Modified/Access/Created) C:/Documents and Settings/weiner/My
Documents/Winter2001/Winter2001.xls <-/media/ntfs/System Volume
Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106352.lnk- which is stored on a local vol type - Fixed- SN
0x94492d7f - Rel path: ../My Documents/Winter2001/Winter2001.xls Working dir:
C:/Documents and Settings/weiner/My Documents/Winter2001 [a rel. path str-SI ID
exists-working dir.-points to a file or dir] - mod since last backup (file:
/media/ntfs/System Volume Information/_restore{0A1D308C-5063-4365-9E40-
27C41DA5F903}/RP1374/A0106352.lnk)"

5.4.9 Windows Internet Explorer history files

The following is a sample of a final timeline output for various Windows Internet Explorer
history files:

exploited.dd--> 2005 05 10 Tue 08:59:26 | 0 | m... | 0 | 0 | 0 | 737620 | "[Internet
Explorer] (Content viewed/Content saved to drive)
URL:http://img.dell.com/images/global/statichome/di_A4C9E7FA.jpg cache stored in:
6TCFAPSX/di_A4C9E7FA[1].jpg - HTTP/1.1 200 OK - Content-Length: 18542 -
Content-Type: image/jpeg - ETag: ""cd2f2a68f54c51:8e3a5"" - X-Powered-By:
ASP.NET (file: /media/ntfs/Weiner/Documents and Settings/rSskie/Local
Settings/Temporary Internet Files/Content.IE5/index.dat)"

exploited.dd--> 2005 05 10 Tue 08:59:26 | 0 | m... | 0 | 0 | 0 | 737620 | "[Internet
Explorer] (Content viewed/Content saved to drive)

56 DRDC Valcartier TM 2011-216

URL:http://img.dell.com/images/global/statichome/di_DC25DC0B.jpg cache stored in:
IJOLA5U7/di_DC25DC0B[1].jpg - HTTP/1.1 200 OK - Content-Length: 17750 -
Content-Type: image/jpeg - ETag: ""216b2568f54c51:8e3a5"" - X-Powered-By:
ASP.NET (file: /media/ntfs/Weiner/Documents and Settings/rSskie/Local
Settings/Temporary Internet Files/Content.IE5/index.dat)"

exploited.dd--> 2005 05 10 Tue 08:59:27 | 0 | m... | 0 | 0 | 0 | 737620 | "[Internet
Explorer] (Content viewed/Content saved to drive)
URL:http://img.dell.com/images/global/brand/icons/viewlarger.gif cache stored in:
ATUNA1IJ/viewlarger[1].gif - HTTP/1.1 200 OK - Content-Length: 187 - Content-Type:
image/gif - ETag: ""050fc79456bc31:9c642"" - X-Powered-By: ASP.NET (file:
/media/ntfs/Weiner/Documents and Settings/rSskie/Local Settings/Temporary Internet
Files/Content.IE5/index.dat)"

exploited.dd--> 2005 05 10 Tue 08:59:27 | 0 | m... | 0 | 0 | 0 | 737620 | "[Internet
Explorer] (Content viewed/Content saved to drive)
URL:http://img.dell.com/images/global/brand/ui/arrow_top.gif cache stored in:
2XCDIHAD/arrow_top[1].gif - HTTP/1.1 200 OK - Content-Length: 48 - Content-Type:
image/gif - ETag: ""0fd578a8d4bc31:8e3a5"" - X-Powered-By: ASP.NET (file:
/media/ntfs/Weiner/Documents and Settings/rSskie/Local Settings/Temporary Internet
Files/Content.IE5/index.dat)"

exploited.dd--> 2005 05 10 Tue 08:59:27 | 0 | m... | 0 | 0 | 0 | 737620 | "[Internet
Explorer] (Content viewed/Content saved to drive)
URL:http://img.dell.com/images/global/masthead/secondary_sep.gif cache stored in:
IJOLA5U7/secondary_sep[1].gif - HTTP/1.1 200 OK - Content-Length: 78 - Content-
Type: image/gif - ETag: ""80eed7208d4bc31:9c642"" - X-Powered-By: ASP.NET (file:
/media/ntfs/Weiner/Documents and Settings/rSskie/Local Settings/Temporary Internet
Files/Content.IE5/index.dat)"

exploited.dd--> 2005 05 10 Tue 08:59:27 | 0 | m... | 0 | 0 | 0 | 737620 | "[Internet
Explorer] (Content viewed/Content saved to drive)
URL:http://img.dell.com/images/global/statichome/di_3F01463E.jpg cache stored in:
2XCDIHAD/di_3F01463E[1].jpg - HTTP/1.1 200 OK - Content-Length: 21669 -
Content-Type: image/jpeg - ETag: ""27e03a68f54c51:9c66e"" - X-Powered-By:
ASP.NET (file: /media/ntfs/Weiner/Documents and Settings/rSskie/Local
Settings/Temporary Internet Files/Content.IE5/index.dat)"

5.4.10 Firefox history files

The following is a sample of a final timeline output for various Firefox history files:

exploited.dd--> 2005 05 23 Mon 08:35:41 | 0 | ma.. | 0 | 0 | 0 | 760219 |
"[Firefox 3 history] (dateAdded/LastModified) User: Weiner Bookmark Folder [Dell]
(file: /media/ntfs/Weiner/Documents and Settings/Weiner/Application
Data/Mozilla/Firefox/Profiles/1b7fqd8y.default/places.sqlite)"

exploited.dd--> 2005 05 23 Mon 08:35:42 | 0 | ma.. | 0 | 0 | 0 | 760219 |
"[Firefox 3 history] (dateAdded/LastModified) User: Weiner Bookmark URL Customize
Links (http://www.microsoft.com/isapi/redir.dll?prd=ie&pver=6&ar=CLinks) [redir.dll]

DRDC Valcartier TM 2011-216 57

count 1 (file: /media/ntfs/Weiner/Documents and Settings/Weiner/Application
Data/Mozilla/Firefox/Profiles/1b7fqd8y.default/places.sqlite)"

exploited.dd--> 2005 05 23 Mon 08:35:42 | 0 | ma.. | 0 | 0 | 0 | 760219 |
"[Firefox 3 history] (dateAdded/LastModified) User: Weiner Bookmark URL Dell
(http://www.dell.com/) [www.dell.com] count 0 (file: /media/ntfs/Weiner/Documents and
Settings/Weiner/Application
Data/Mozilla/Firefox/Profiles/1b7fqd8y.default/places.sqlite)"

exploited.dd--> 2005 05 23 Mon 08:35:42 | 0 | ma.. | 0 | 0 | 0 | 760219 |
"[Firefox 3 history] (dateAdded/LastModified) User: Weiner Bookmark URL Free
Hotmail (http://www.microsoft.com/isapi/redir.dll?prd=ie&ar=hotmail) [redir.dll] count
1 (file: /media/ntfs/Weiner/Documents and Settings/Weiner/Application
Data/Mozilla/Firefox/Profiles/1b7fqd8y.default/places.sqlite)"

exploited.dd--> 2005 05 23 Mon 08:35:42 | 0 | ma.. | 0 | 0 | 0 | 760219 |
"[Firefox 3 history] (dateAdded/LastModified) User: Weiner Bookmark URL MSN.com
(http://www.microsoft.com/isapi/redir.dll?prd=ie&pver=6&ar=IStart) [redir.dll] count 0
(file: /media/ntfs/Weiner/Documents and Settings/Weiner/Application
Data/Mozilla/Firefox/Profiles/1b7fqd8y.default/places.sqlite)"

exploited.dd--> 2005 05 23 Mon 08:35:42 | 0 | ma.. | 0 | 0 | 0 | 760219 |
"[Firefox 3 history] (dateAdded/LastModified) User: Weiner Bookmark URL Radio
Station Guide
(http://www.microsoft.com/isapi/redir.dll?prd=windows&sbp=mediaplayer&plcid=&pve
r=6.1&os=&over=&olcid=&clcid=&ar=Media&sba=RadioBar&o1=&o2=&o3=)
[redir.dll] count 0 (file: /media/ntfs/Weiner/Documents and Settings/Weiner/Application
Data/Mozilla/Firefox/Profiles/1b7fqd8y.default/places.sqlite)"

exploited.dd--> 2005 05 23 Mon 08:35:42 | 0 | ma.. | 0 | 0 | 0 | 760219 |
"[Firefox 3 history] (dateAdded/LastModified) User: Weiner Bookmark URL
Support.Dell.com (http://support.dell.com/) [support.dell.com] count 0 (file:
/media/ntfs/Weiner/Documents and Settings/Weiner/Application
Data/Mozilla/Firefox/Profiles/1b7fqd8y.default/places.sqlite)"

5.4.11 Windows Setupapi logs

The following is a sample of a final timeline output for various Windows Setupapi logs:

exploited.dd--> 2009 04 20 Mon 10:39:17 | 0 | macb | 0 | 0 | 0 | 3602 |
"[SetupAPI Log] (Entry written) DriverContext: Reported hardware ID(s) from device
parent bus. Context: Reported compatible identifiers from device parent bus. Context:
Driver install entered (through services.exe). Information: Compatible INF file found.
Information: Install section. Context: Processing a DIF_SELECTBESTCOMPATDRV
request. Information: [c:/windows/inf/volume.inf]. Information: . Information: .
Information: . Context: Processing a DIF_SELECTBESTCOMPATDRV request.
Information: Copy-only installation
[STORAGE/REMOVABLEMEDIA/7&2F5BE86A&0&RM]. Context: Processing a
DIF_SELECTBESTCOMPATDRV request. Information: . Context: Processing a
DIF_SELECTBESTCOMPATDRV request. Context: Installation in progress
[c:/windows/inf/volume.inf]. Information: . Context: Processing a

58 DRDC Valcartier TM 2011-216

DIF_SELECTBESTCOMPATDRV request. Information:
[STORAGE/REMOVABLEMEDIA/7&2F5BE86A&0&RM]. Information: Device
successfully setup [STORAGE/REMOVABLEMEDIA/7&2F5BE86A&0&RM]. (file:
/media/ntfs//WINDOWS/setupapi.log)"

exploited.dd--> 2009 05 25 Mon 09:37:40 | 0 | macb | 0 | 0 | 0 | 3602 |
"[SetupAPI Log] (Entry written) Context: Driver install entered (through services.exe).
Error: . (file: /media/ntfs//WINDOWS/setupapi.log)"

exploited.dd--> 2009 05 25 Mon 09:39:39 | 0 | macb | 0 | 0 | 0 | 3602 |
"[SetupAPI Log] (Entry written) DriverContext: Reported hardware ID(s) from device
parent bus. Context: Reported compatible identifiers from device parent bus. Context:
Driver install entered. Information: [c:/windows/inf/oem3.inf]. Information: .
Information: . (file: /media/ntfs//WINDOWS/setupapi.log)"

exploited.dd--> 2009 05 25 Mon 09:39:40 | 0 | macb | 0 | 0 | 0 | 3602 |
"[SetupAPI Log] (Entry written) DriverContext: Reported hardware ID(s) from device
parent bus. Context: Reported compatible identifiers from device parent bus. Context:
Driver install entered. Information: [c:/windows/inf/ich5core.inf]. Information: .
Information: . (file: /media/ntfs//WINDOWS/setupapi.log)"

exploited.dd--> 2009 05 25 Mon 09:39:40 | 0 | macb | 0 | 0 | 0 | 3602 |
"[SetupAPI Log] (Entry written) DriverContext: Reported hardware ID(s) from device
parent bus. Context: Reported compatible identifiers from device parent bus. Context:
Driver install entered. Information: [c:/windows/inf/iidigrcvdrvx2k.inf]. Information: .
Information: . (file: /media/ntfs//WINDOWS/setupapi.log)"

5.4.12 Flash cookies

The following is a sample of a final timeline output for various Flash cookies:

exploited.dd--> 2008 06 24 Tue 12:42:42 | 0 | macb | 0 | 0 | 0 | 596173 | "[Flash
Cookie] (timeStamp) timeStamp -> File: /media/ntfs//Documents and
Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/52ZCX5EQ/www.gogole.com/plugins/swf/preloader-
F7.swf/2788-cookie.sol and object name: 2788-cookie variable: {timeStamp = (nan) }
(file: /media/ntfs//Documents and Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/52ZCX5EQ/www.gogole.com/plugins/swf/preloader-
F7.swf/2788-cookie.sol)"

exploited.dd--> 2008 06 24 Tue 12:46:22 | 0 | macb | 0 | 0 | 0 | 598857 | "[Flash
Cookie] (timeStamp) timeStamp -> File: /media/ntfs//Documents and
Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/52ZCX5EQ/www.gogole.com/plugins/swf/preloader-
F7.swf/2790-cookie.sol and object name: 2790-cookie variable: {timeStamp = (nan) }
(file: /media/ntfs//Documents and Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/52ZCX5EQ/www.gogole.com/plugins/swf/preloader-
F7.swf/2790-cookie.sol)"

exploited.dd--> 2008 08 12 Tue 18:28:31 | 0 | macb | 0 | 0 | 0 | 598480 | "[Flash
Cookie] (timeStamp) timeStamp -> File: /media/ntfs//Documents and

DRDC Valcartier TM 2011-216 59

Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/52ZCX5EQ/www.gogole.com/plugins/swf/preloader-
F7.swf/2805-cookie.sol and object name: 2805-cookie variable: {timeStamp = (nan) }
(file: /media/ntfs//Documents and Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/52ZCX5EQ/www.gogole.com/plugins/swf/preloader-
F7.swf/2805-cookie.sol)"

exploited.dd--> 2008 08 18 Mon 09:06:10 | 0 | macb | 0 | 0 | 0 | 105527 |
"[Flash Cookie] (now) now -> File: /media/ntfs//Documents and
Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/52ZCX5EQ/www.gogole.com/includes/flash/favoritelocations/fa
v.swf/favLoc.sol and object name: favLoc variable: {now = (nan) } (file:
/media/ntfs//Documents and Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/52ZCX5EQ/www.gogole.com/includes/flash/favoritelocations/fa
v.swf/favLoc.sol)"

exploited.dd--> 2008 10 01 Wed 23:32:40 | 0 | macb | 0 | 0 | 0 | 736113 |
"[Flash Cookie] (expires) expires -> File: /media/ntfs//Documents and
Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/8BD63CD4/msn.net/Kia_100108.sol and object name:
Kia_100108 variable: {expires = (nan) } (file: /media/ntfs//Documents and
Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/8BD63CD4/msnpremads.edgesuite.net/Kia_100108.sol)"

exploited.dd--> 2008 10 18 Sat 08:58:02 | 0 | macb | 0 | 0 | 0 | 499160 | "[Flash
Cookie] (expires) expires -> File: /media/ntfs//Documents and
Settings/Weiner/Application Data/Macromedia/Flash
Player/#SharedObjects/8BD63CD4/.msn.com/NBC_Crusoe_101.sol and object name:
NBC_Crusoe_101 variable: {expires = (nan) } (file: /media/ntfs//Documents and
Settings/Weiner/Application Data/Macromedia/Flash

60 DRDC Valcartier TM 2011-216

6 Conclusion

Digital forensic timelines can and should be used as a part of the investigative process whenever
conducting a digital forensic investigation. However, as seen in this technical memorandum,
their generation and use is not straightforward as there are many tools and platforms to choose
from. This technical memorandum, with its included scripts and background material, has
hopefully provided sufficient resources so that the reader can generate his own script or program
based on his specific requirements.

Open source software was chosen for generating and processing timelines due to the fact that this
increases the software and tools at the investigator’s disposal which he can then use to customize
not only the look and feel of the timeline but perform pattern matching and analysis against it.
For these reasons, the authors assert that when combining log2timeline with The Sleuth Kit and
simple shell scripts, an ideal manner software suite is available for the advanced generation of
digital timelines. Timeline generation capability can be further customized by using additional
data processing tools which could be simple C programs or shell scripts to make up for
deficiencies in log2timeline or The Sleuth Kit.

Although graphical timeline generation is possible, the vast majority of those examined in this
technical memorandum are severely lacking in capability. Most of the timeline generation tools
examined are not particularly adept at generating or visualizing timelines. Although log2timeline
is the most proficient tool for text-based timeline generation, it has no visualization capability
whatsoever. The tool with the most potential for bridging the gap between timeline generation
and visualization is Aftertime tool, which supports nearly as many date/time metadata sources as
log2timeline. However, Aftertime has important limitations of its own including the inability to
correctly export graphical or text-based reports for external data processing. In all fairness
however, it is by and far the best timeline visualization software currently available, even though
it is entirely incompatible with the Bodyfile format.

As such, much work has yet to be completed in the arena of timeline generation and analysis.
Progress could be made sooner if software developers and forensic professionals could agree on
an open standard for storing raw digital filesystem object date/time metadata, perhaps using the
Bodyfile format as an option since it is already both open source in nature and an unofficial open
standard due to the wide use of The Sleuth Kit which is gaining acceptance. Agreement on an
open standard would provide additional incentive for the more popular digital forensic suites
including EnCase and FTK to better support timeline generation and visualization within their
own software products. Standardization would allow these suites to import and export to and
from an agreed upon open standard such that additional data processing could be conducted using
other software without the need for timeline conversion or translation.

Looking to the future, it would be advantageous to investigators if a definitive list of the effects of
filesystem activity could be compiled, similar to those found in Annex A.3, but more complete
and which extends across multiple filesystem formats. Moreover, filesystem developers could
further help digital forensic professionals by incorporating additional date/time metadata
structures into their existing filesystems, which could then be used for improving the resolution
and collection of filesystem date/time metadata activity.

DRDC Valcartier TM 2011-216 61

The work presented herein, including not only the technical background but also the various
scripts and C programs, has been especially prepared for those working with Windows-based
filesystems, but can be readily adapted for use with Linux and UNIX disk images without
significant effort.

62 DRDC Valcartier TM 2011-216

This page intentionally left blank.

DRDC Valcartier TM 2011-216 63

References

[1] Guidance Software. Guidance Software Encase Forensic Edition. Informational web site.
Digitalintelligence.com.
http://www.digitialintelligence.com/software/guidancesoftware/encase/.

[2] AccessData. AccessData Forensic Toolkit. Informational web site. AccessData. 2010
http://accessdata.com/products/forensic-investigation/ftk.

[3] Dahon, Indra. Live Forensics: Forensic Tool: EnCase or FTK. Informational web site.
Liveforensic.blogspot.com. September 2009.
http://liveforensic.blogspot.com/2009/09/forensic-tool-encase-or-ftk.html.

[4] X-Ways Software Technology AG. X-Ways Forensics: Integrated Computer Forensics
Software. Informational web site. X-Ways Software Technology AG. http://www.x-
ways.net/forensics.

[5] Carrier, Brian. The Sleuth Kit: Description. Informational web site. Sleuthkit.org. 2010.
http://www.sleuthkit.org/sleuthkit/desc.php.

[6] Wikipedia. ISO 9660. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/ISO_9660.

[7] Wikipedia. Universal Disk Format. Online encyclopaedic entry. Wikimedia Foundation Inc.
December 2010. http://en.wikipedia.org/wiki/Universal_Disk_Format.

[8] Wang, Wenguang. Wenguang’s Introduction to Universal Disk Format (UDF).
Informational web site. Wenguang Weng. February 2009.
http://homepage.mac.com/wenguangwang/myhome/udf.html.

[9] Optical Storage Technology Association. Universal Disk Format Specification. Technical
report. Optical Storage Technology Association. March 2005.
http://www.osta.org/specs/pdf/udf260.pdf.

[10] Farmer, Dan, and Venema, Wietse. Forensic Discovery. Book. First edition. Addison-
Wesley Publishing. January 2005. ISBN-13: 978-0201634976.

[11] Farmer, Dan. What Are Mactimes? Online article. Dr. Dobb’s Journal. October 2000.
http://drdobbs.com/184404275.

[12] Weise, Joel and Powell, Brad. Using Computer Forensics When Investigating System
Attacks. Sun Blueprint/Technical report. Revision 1.0. Part No.: 819-2262-10. Sun
Microsystems. April 2005. http://www.sun.com/blueprints/0405/819-2262.pdf.

[13] O’Keefe, Patrick B. Installing The Coroner’s Toolkit and using the mactime utility.
Technical document. University of South Carolina, Department of Computer Science.
http://www.csc.sc.edu/~okeefe/tutorials/cert/i046.01.html.

64 DRDC Valcartier TM 2011-216

[14] Wikipedia. Comparison of file systems. Online encyclopaedic entry. Wikimedia
Foundation Inc. January 2011. http://en.wikipedia.org/wiki/Comparison_of_file_systems.

[15] Carrier, Brian. bodyfile. Informative/technical web page. Wiki.sleuthkit.org. January
2011. http://wiki.sleuthkit.org/index.php?title=Body_file.

[16] Unknown author. I see what you did there: Time stamps in digital forensics.
Presentation. Unknown date. http://trustedsignal.com/presos/forensic_time_lines.pdf.

[17] Carrier, Brian. Mactime output. Informative/technical web page. Wiki.sleuthkit.org.
January 2011. http://wiki.sleuthkit.org/index.php?title=Mactime_output.

[18] Wikipedia. MAC times. Online encyclopaedic entry. Wikimedia Foundation Inc.
November 2010. http://en.wikipedia.org/wiki/MAC_times.

[19] Wikipedia. File Allocation Table. Online encyclopaedic entry. Wikimedia Foundation
Inc. January 2011. http://en.wikipedia.org/wiki/File_Allocation_Table.

[20] Wikipedia. Ext3. Online encyclopaedic entry. Wikimedia Foundation Inc. December
2010. http://en.wikipedia.org/wiki/Ext3.

[21] Wikipedia. NTFS. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/NTFS.

[22] Watson, Bob. Accdate. Informational web site. Bob Watson. June 2000.
http://www.lagmonster.org/docs/DOS7/x-accdate.html.

[23] Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System
Specification: FAT: General Overview of On-Disk Format. Version 1.03. Whitepaper.
Microsoft Corporation. December 2000.

[24] Newbigin, John. John’s spec of the second extended filesystem. Informational web site.
John Newbigin. http://uranus.chrysocome.net/explore2fs/es2fs.htm.

[25] Ionescu, Alex. NTFS On-Disk Structure: VisualBasic NTFS Programmer’s Guide.
Technical guide. Relsoft Technologies. 2004. http://www.alex-ionescu.com/NTFS.pdf.

[26] Wikipedia. Inode. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/Inode.

[27] Wikipedia. Inode pointer structure. Online encyclopaedic entry. Wikimedia Foundation
Inc. July 2010. http://en.wikipedia.org/wiki/Inode_pointer_structure.

[28] Carrier, Brian. File System Forensic Analysis. Book. First edition. Addison Wesley
Publishing. 2005. ISBN: 0-32-126817-2.

[29] Pate, Steve D. UNIX Filesystems: Evolution, Design, and Implementation (Veritas
Series). Book. First edition Wiley Publishing. 2003. ISBN: 0-471-16483-6.

DRDC Valcartier TM 2011-216 65

[30] Wikipedia. Stat (Unix). Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/stat_(Unix).

[31] Plaugher, P.J. The Standard C Library. Book. First edition. 1991. ISBN.:0-13-131509-
9.

[32] Wikipedia. ReiserFS. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/ReiserFS.

[33] Buchholz, Florian. The structure of the Reiser file system. Technical document. Florian
Buchholz. January 2006. http://homes.cerias.purdue.edu/~florian/reiser/reiserfs.php.

[34] Wikipedia. Unix time. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/Unix_time.

[35] Wikipedia. Extent (file systems). Online encyclopaedic entry. Wikimedia Foundation
Inc. November 2010. http://en.wikipedia.org/wiki/Extent_(file_systems).

[36] Wikipedia. Ext2. Online encyclopaedic entry. Wikimedia Foundation Inc. December
2010. http://en.wikipedia.org/wiki/Ext2.

[37] Wikipedia. Ext4. Online encyclopaedic entry. Wikimedia Foundation Inc. December
2010. http://en.wikipedia.org/wiki/Ext4.

[38] Wikipedia. Unix File System. Online encyclopaedic entry. Wikimedia Foundation Inc.
November 2010. http://en.wikipedia.org/wiki/Unix_File_System.

[39] Wikipedia. Filesystem in Userspace. Online encyclopaedic entry. Wikimedia
Foundation Inc. January 2011. http://en.wikipedia.org/wiki/Filesystem_in_Userspace.

[40] Quale, Doug, Lu, H.J, et al. Mount man file. Man page. Util-linux-ng. Version 0.97.3.

[41] Hewlett-Packard. HP-UX Release 11.0 System Calls and File Formats Sections 2 and 4.
Technical reference. Edition 1. Volume 3 of 5. Document No.: B2355-90166. 1997.
http://docs.hp.com/en/B2355-90682.pdf.

[42] Wikipedia. Fork (filesystem). Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/Fork_(filesystem).

[43] Carbone, Richard. File recovery and data extraction using automated data recovery tools:
A balanced approach using Windows and Linux when working with an unknown disk image
and filesystem. Technical note. Defence R&D Canada - Valcartier. TN 2009-161.
September 2009.

[44] Carbone, Richard. Developing a comprehensive approach for conducting a computer
forensic investigation under Linux: A generic approach for maximum evidentiary extraction
in a broad scope investigation (Draft). Technical Memorandum (Draft). Defence R&D
Canada - Valcartier.

66 DRDC Valcartier TM 2011-216

[45] Compaq Information Technologies Group. Guide to OpenVMS File Applications.
Technical guide. Compaq Information Technologies Group. 2002. Order Number: AA-
PV6PE-TK.
http://h71000.www7.hp.com/doc/731final/documentation/pdf/ovms_731_file_app.pdf.

[46] Compaq Information Technologies Group. OpenVMS Guide to Extended File
Specifications. Technical guide. Compaq Information Technologies Group. 2002. Order
Number: AA-REZRB-TE.
http://h71000.www7.hp.com/doc/731final/documentation/pdf/ovms_731_efs_gd.pdf.

[47] Wikipedia. Filesystem permissions. Online encyclopaedic entry. Wikimedia Foundation
Inc. January 2011. http://en.wikipedia.org/wiki/File_system_permissions.

[48] Wikipedia. Attrib. Online encyclopaedic entry. Wikimedia Foundation Inc. August
2010. http://en.wikipedia.org/wiki/Attrib.

[49] Wikipedia. Cacls. Online encyclopaedic entry. Wikimedia Foundation Inc. December
2010. http://en.wikipedia.org/wiki/Cacls.

[50] Wikipedia. Access control list. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/Access_control_list.

[51] Klein, Helge. Command Line-Version (SetACL.exe) Syntax and Description. Technical
description/informational web site. Helgeklein.com. 2011.
http://helgeklein.com/setacl/documentation/command-line-version-setacl-exe/.

[52] ECMA International. Volume and File Structure of CDROM for Information
Interchange. Technical report. Second edition. ECMA International. December 1987.
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-119.pdf.

[53] Custer, Helen. Inside the Windows NT File System. Book. First edition. Microsoft
Press. 1994. ISBN: 1-55615-660-X.

[54] Wikipedia. Standard C library. Online encyclopaedic entry. Wikimedia Foundation Inc.
February 2011. http://en.wikipedia.org/wiki/Standard_C_library.

[55] Wikipedia. POSIX C library. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/C_POSIX_library.

[56] Wikipedia. POSIX. Online encyclopaedic entry. Wikimedia Foundation Inc. March
2011. http://en.wikipedia.org/C_POSIX_library.

[57] Wikipedia. CD-RW. Online encyclopaedic entry. Wikimedia Foundation Inc. March
2011. http://en.wikipedia.org/wiki/CD-RW.

[58] Wikipedia. DVD+RW. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/DVD%2BRW.

DRDC Valcartier TM 2011-216 67

[59] Bennett, Hugh. Understanding Recordable & Rewritable DVD. Technical guide. First
edition. April 2004. Optical Storage Technology Association.
http://www.osta.org/technology/pdf/dvdqa.pdf.

[60] Shullich, Robert. Reverse Engineering the Microsoft Extended FAT File System
(exFAT). Technical report. SANS Institute. December 2009.
http://www.sans.org/reading_room/whitepapers/forensics/reverse-engineering-microsoft-
exfat-file-system_33274.

[61] Wikipedia. exFAT. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/ExFAT.

[62] Wikipedia. Extended file attributes. Online encyclopaedic entry. Wikimedia Foundation
Inc. March 2011. http://en.wikipedia.org/wiki/Extended_file_attributes.

[63] André, Jean-Pierre. NTFS-3G: Extended Attributes. Informational web site.
Tuxera.com. January 2011. http://b.andre.pagesperso-orange.fr/extended-attr.html.

[64] Eager, Bob. Implementation of extended attributes on the FAT file system.
Informational web site. Tavi Systems. October 2000.
http://www.tavi.co.uk/os2pages/eadata.html.

[65] NTFS.com. NTFS File System Structure, Recovery Software, Hard Disk Internals.
Informational web site. NTFS.com. 2011. http://www.ntfs.com.

[66] Gudjonsson, Kristinn. Log2timeline. Informational web site. Log2timeline.net. 2010.
http://log2timeline.net/.

[67] Cloppert, Michael. Building a complete timeline for intrusion cases. Blog. SANS
Institute. December 2008. http://computer-forensics.sans.org/blog/2008/12/29/building-a-
complete-timeline-for-intrusion-cases/.

[68] Gudjonsson, Kristinn. Mastering the Super Timeline with log2timeline. Technical
report. SANS Institute. June 2010.
http://www.sans.org/reading_room/whitepapers/logging/mastering-super-timeline-
log2timeline_33438.

[69] Gudjonsson, Kristinn. Mastering the Super Timeline: log2timeline style. Presentation.
The 2010 European Community Digital Forensics and Incident Response Summit, London
2010. 2010. http://computer-forensics.sans.org/summit-archives/2010/files/eu-digital-
forensics-incident-response-summit-kristinn-gudjonsson-mastering-the-super-timeline.pdf.

[70] Howlett, Tony. Open Source Security Tools. Book. First edition. Prentice Hall. July
2004. No.: 0-321-19443-8.

[71] Dowling, Anthony. Digital Forensics: A Demonstration of the Effectiveness of The
Sleuth Kit and Autopsy Forensic Browser. Master’s thesis. University of Otago, Dunedin,
New Zealand. May 2006. http://eprints.otago.ac.nz/357/1/DowlingAcombOcr.pdf.

68 DRDC Valcartier TM 2011-216

[72] Dowling, Anthony. The Sleuth Kit v2.01 and Autopsy Forensic Browser Demonstration.
Technical guide. June 2006.

[73] Grundy, Barry J. The Law Enforcement and Forensic Examiner’s Introduction to Linux:
A Practitioner’s Guide to Linux as a Computer Forensic Platform. Book. Version 3.78.
December 2008. http://www.linuxleo.com/Docs/linuxintro-LEFE-3.78.pdf.

[74] Ford, Michael T. Analyses of Italian Malware, Romanian Rootkits, and United States
Computer Law. Technical report. SANS Institute. March 2003.

[75] Miller, III, Roland E. Analysis of an unknown Mac OS X Public Beta System Using Mac
OS X 10. Technical report. SANS Institute. September 2002.

[76] Jeffris, Clarke L. The Coroners Toolkit – In depth. Technical report. SANS Institute.
2002.

[77] Naval Postgraduate School. Fiwalk. Informational web site. DEEP: Digital Evaluation
and Exploitation, Department of Computer Science, Naval Postgraduate School.
http://domex.nps.edu/deep/Fiwalk.html.

[78] Wikipedia. Compact Disc. Online encyclopaedic entry. Wikimedia Foundation Inc.
April 2011. http://en.wikipedia.org/wiki/Compact_Disc.

[79] Carvey, Harlan. TimeLine Analysis, part III. Blog. Windowsir.blogspot.com. February
2009. http://windowsir.blogspot.com/2009/02/timeline-analysis-pt-iii.html.

[80] Carvey, Harlan. Timeline Analysis, part VI - Taking Another Step. Blog.
Windowsir.blogspot.com. April 2009. http://windowsir.blogspot.com/2009/04/timeline-
analysis-pt-vi-taking-another.html.

[81] Mauro, Jim and McDougall, Richard. Solaris Internals: Core Kernel Components. Book.
First edition. Sun Microsystems Press. 2000. ISBN: 0-13-022496-0.

[82] Wikipedia. Exchangeable image file format. Online encyclopaedic entry. Wikimedia
Foundation Inc. June 2011. http://en.wikipedia.org/wiki/Exchangeable_image_file_format.

[83] ArcSight Inc. Common Event Format. Technical Note. Revision 15. July 2009.
ArcSight Inc.

[84] ArcSight Inc. Common Event Format: Event Interoperability Standard. White paper.
2006. ArcSight Inc.

DRDC Valcartier TM 2011-216 69

Annex A About CDs, disc images formats and
filesystem-based MAC times

A.1 Windows CD-ROM optical installation media vs. detected
filesystem type and size

The following is a table listing the various Windows optical installation media with their
approximate respective sizes. This list is not complete but suitably conveys the point that many
DVDs actually contain ISO 9660-based filesystems.

Table 2. Corresponding Windows optical installation media detected filesystem versus
approximate optical disc size.

Windows operating system installation
optical disc media

Detected filesystem Approximate size

Windows NT Server (no SP) ISO 9660 < 650 MB

Windows 2000 (no SP) ISO 9660 < 650 MB

Windows XP 32-bit Professional SP2 ISO 9660 < 650 MB

Windows XP 64-bit Professional SP1 ISO 9660 < 650 MB

Windows 2003 Server Enterprise SP1 ISO 9660 < 650 MB

Windows Vista 32-bit Ultimate SP1 ISO 9660 > 3.0 GB

Windows Vista 64-bit Ultimate SP1 ISO 9660 > 3.8 GB

Windows 7 32-bit Ultimate (no SP) ISO 9660 < 2.0 GB

Windows 7 64-bit Ultimate (no SP) ISO 9660 > 3.0 GB

Windows 2008 64-bit Server (no SP) ISO 9660 > 2.9 GB

A.2 Disc image format for various publicly available Linux,
BSD and Solaris distributions

According to [78], the maximum data capacity of a standard Compact Disc is 870 MB or
912,261,120 bytes. Based on a variety of collected distributions by the authors over the years
including Linux, BSD and Solaris, only disc images larger than 870 MB have been analyzed. The
analysis carried out herein is the same as that carried in the previous section – verify the size and
disc image format of the disc image in question. The results can be found in the table below:

Table 3. Disc image-based distribution with detected filesystem, operating system type and disc
image size.

Stored disc image name Detected filesystem Operating system type Size (in bytes)

samurai-0.9.5.iso ISO 9660 Linux (Samurai) 1,410,062,336

70 DRDC Valcartier TM 2011-216

Icaros-pc-i386.iso ISO 9660 AROS Research
OS/AmigaOS

1,980,651,520

backtrack4-R2.iso ISO 9660 Linux (BackTrack 4) 2,034,880,512

sol-10u9-ga-x86-dvd.iso ISO 9660 Solaris (x86) 10 10/09 2,146,959,360

FreeBSD-8.1-RELEASE-
amd64-dvd1.iso

ISO 9660 FreeBSD 2,305,976,320

FC-4-x86_64-DVD.iso ISO 9660 Linux (Fedora Core 4) 2,932,650,688

FC-14-x86_64-DVD.iso ISO 9660 Linux (Fedora Core 14) 3,520,802,816

Solaris_9_SPARC_1202.iso ISO 9660 Solaris (SPARC) 9
12/02

3,633,971,200

Knoppix_V6.2DVD-2009-11-
18-EN.iso

ISO 9660 Linux (Knoppix 6.2) 3,853,285,376

Knoppix511DVDEnglish.iso ISO 9660 Linux (Knoppix 5.11) 4,324,202,496

Snow_Leopard_Mac_OSX.iso ISO 9660 Mac OS X 10.6 7,771,521,024

Thus, this simple analysis reveals that many of today’s popular UNIX-related software
distributions which although written to DVD due to their size are in fact based on the CDFS
filesystem format.

A.3 MAC times for various filesystems given different actions
taken against files

It is difficult to correctly deduce both the exact meaning of mtime, atime, ctime and crtime and
understand how different filesystem actions affect these date/time metadata. Sources of reliable
information are scarce and sometimes conflicting. Therefore, according to [17], the following
chart applies to the various date/time metadata for the most commonly found filesystems handled
by The Sleuth Kit:

Table 4. Mac Meaning by File System (reproduced from [17]).

File System m (mtime) a (atime) c (ctime) b (crtime)
Ext2/3 Modified Accessed Changed Does not apply
FAT Written Accessed Does not apply Created
NTFS File Modified Accessed MFT Modified Created
UFS Modified Accessed Changed Does not apply

According to [16, 28], the NTFS filesystem will update both its $STANDARD_INFORMATION
and $FILE_NAME MFT entries differently, depending on the underlying action. The following
charts clearly demonstrate the date/time consequences of various actions undertaken either by the
user or the operating system.

DRDC Valcartier TM 2011-216 71

Table 5. File modifications resulting in changes to the MFT date/time
$STANDARD_INFORMATION attribute (reproduced from [16]).

 Rename Local
Move

Volume
Move

Copy Access Modify Create Delete

M X X
A X X X X X
C X X X X X X
B X X

Table 6. File modifications resulting in changes to the MFT date/time $FILE_NAME attribute
(reproduced from [16]).

 Rename Local
Move

Volume
Move

Copy Access Modify Create Delete

M X X X X X
A X X X
C X X X X X
B X X X

Thus, based on the aforementioned charts, concluding that the NTFS filesystem is complex
cannot be overstated as it is arguably the most complex filesystem the forensic investigator is
likely to encounter. Moreover, in comparison to inode-based filesystems, there are many
potentially extractable metadata attributes which can be of service to the investigator depending
on the specific needs of a given investigation.

Table 7. File deletion MAC time changes for a given filesystem type (Source [28]).

 FAT NTFS54 EXT2/3/4 UFS
M X X
A
C X X
B
D55 X

54 Reference [28] makes no mention of whether these changes are reflected in

$STANDARD_INFORMATION or $FILE_NAME. $STANDARD_INFORMATION is
assumed.

55 D denotes dtime.

72 DRDC Valcartier TM 2011-216

Table 8. Directory-based MAC time changes upon sub-file deletion for a given filesystem type
(Source [28]).

 FAT NTFS56 EXT2/3/4 UFS
M X X X
A X X X
C X X X
B
D57

The information provided by the aforementioned charts is highly revealing although unfortunately
certain discrepancies become apparent. These discrepancies are concerned specifically with the
MAC time changes that occur to an NTFS-based file upon its deletion. This discrepancy can be
seen by examining the NTFS-related MAC times of tables 3 and 5.

Further definitive research is required in order to decisively determine the MAC time changes
which occur to files given different actions taken against them. Although it is important that the
NTFS filesystem be better understood with respect to which types of changes results in which
date/time metadata modifications, other filesystems including Ext2/3/4, XFS and UFS should be
included in such research, given their widespread use across many diverse UNIX-like systems.

The work of Brian Carrier from [28] will be considered, if only for the intents and purposes
herein, as correct.

56 Reference [28] makes no mention of whether these changes are reflected in

$STANDARD_INFORMATION or $FILE_NAME. $STANDARD_INFORMATION is
assumed.

57 D denotes dtime.

DRDC Valcartier TM 2011-216 73

Annex B Shell scripts and C code

B.1 Shell script: timeline.sh

The following is an example of the Bash shell script used to extract timeline-related metadata
from a raw hard disk drive image, evidence.dd. Line numbers have been added to improve
readability. Specific C programs written by the authors, which are highlighted for easy location
in the script, can be found in their corresponding sections further on in this Annex.

Use of this code is pursuant to the terms specified in the Disclaimer (see Page viii) and C source
code and Bash shell script code disclosure licensing agreement (see Page xi).

 1 #!/bin/sh
 2
 3 #Clear screen:
 4 #=============
 5 clear
 6
 7 #Print disclaimer:
 8 #=================
 9 echo "Welcome to TIMELINE.SH, a Log2timeline/TSK-based filesystem timeline

automated generation system."
 10 echo "Written by Richard Carbone, DRDC Valcartier, 2010-2011."
 11 sleep 2
 12
 13 #Test user input:
 14 #================
 15
 16 if ["$1" == "-h"] || ["$1" == "-help"] || ["$1" == "--help"]
 17 then
 18 echo ""
 19 echo "=="
 20 echo "To use the program correctly, specify the following:"
 21 echo "=="
 22 echo ""
 23 echo "./timeline.sh Working_Directory Byte_Offset Disk_Image_File

Mount_Point Partition#"
 24 echo ""
 25 echo "Where:"
 26 echo "======"
 27 echo ""
 28 echo "Working_Directory = Specify absolute directory location where timeline

will be built."
 29 echo "-> Location must actually exist."
 30 echo ""
 31 echo "Byte_Offset = Byte offset where filesystem begins."

74 DRDC Valcartier TM 2011-216

 32 echo "-> Bytes to start of actual filesystem."
 33 echo ""
 34 echo "Disk_Image_File = Absolute location and name of evidence disk image

to mount."
 35 echo "-> i.e. /tmp/evidence.dd"
 36 echo ""
 37 echo "Mount_Point = Absolute location and name of evidence disk image

mount point."
 38 echo "-> i.e. /media/evidence"
 39 echo ""
 40 echo "Partition# = current evidence disk image partition number."
 41 echo "-> i.e. 0"
 42 exit 1
 43 fi
 44
 45 echo ""
 46 echo "Testing if Working Directory location exists..."
 47 if [-d "$1"]
 48 then
 49 echo "Working Directory OK."
 50 else
 51 echo "Working Directory does not exist."
 52 echo "Exiting..."
 53 exit 2
 54 fi
 55
 56 echo ""
 57 echo "Testing if Filesystem Byte Offset is equal to 0 or greater..."
 58 if ["$2" -ge "0"]
 59 then
 60 echo "Filesystem Byte Offset OK."
 61 else
 62 echo "Could not determine status of Filesystem Byte Offset."
 63 echo "Exiting..."
 64 exit 3
 65 fi
 66
 67 echo ""
 68 echo "Testing if Disk Image File exists..."
 69 if [-f "$3"]
 70 then
 71 echo "Disk Image File OK."
 72 else
 73 echo "Could not determine the status of the Disk Image File."
 74 echo "Exiting..."
 75 exit 4
 76 fi
 77

DRDC Valcartier TM 2011-216 75

 78 echo ""
 79 echo "Testing if Disk Image File is empty..."
 80 if [`ls -al "$3" | awk '{print $5}'` -gt 0]
 81 then
 82 echo "Disk Image File size OK."
 83 else
 84 echo "Disk Image File is empty."
 85 echo "Exiting..."
 86 exit 5
 87 fi
 88
 89 echo ""
 90 echo "Testing if Mount Point location exists..."
 91 if [-d "$4"]
 92 then
 93 echo "Mount Point location OK."
 94 else
 95 echo "Mount Point location does not exist."
 96 echo "Exiting..."
 97 exit 6
 98 fi
 99
 100 echo ""
 101 echo "Testing if current Partition Number is equal to 0 or greater..."
 102 if ["$5" -ge "0"]
 103 then
 104 echo "Partition Number OK."
 105 else
 106 echo "Could not determine Partition Number."
 107 echo "Exiting..."
 108 exit 7
 109 fi
 110
 111 echo ""
 112 echo "Starting Program "$0"..."
 113
 114 #Assigning input parameters to easy-of-use variables:
 115 #==
 116 location=$1
 117 offset=$2
 118 disk_image_name=$3
 119 image_name=`/bin/basename $3`
 120 mount_point=$4
 121 part_number=$5
 122 fls_offset=$(($offset/512))
 123
 124 #Mount filesystem image:
 125 #=======================

76 DRDC Valcartier TM 2011-216

 126 echo ""
 127 echo "Mounting disk image read-only..."
 128 mount -o ro,loop,utf8,uni_xlate=1,offset=$offset $disk_image_name

$mount_point
 129
 130 #Make Directory Structure:
 131 #=========================
 132 echo ""
 133 echo "Creating timeline directory structure..."
 134 cd $location
 135 mkdir timeline
 136 mkdir timeline/$image_name
 137 mkdir timeline/$image_name/$part_number
 138 mkdir timeline/$image_name/$part_number/mac
 139 mkdir timeline/$image_name/$part_number/time
 140 mkdir timeline/$image_name/$part_number/final_timeline
 141 mkdir timeline/$image_name/$part_number/regfiles
 142 mkdir timeline/$image_name/$part_number/eventlogs
 143 mkdir timeline/$image_name/$part_number/eventxlogs
 144
 145 #Generate MAC Times:
 146 #===================
 147 echo ""
 148 echo "Generating MAC Times from The Sleuth Kit..."
 149 cd $location/timeline/$image_name/$part_number
 150 fls -m / -r -a -l -p -o $fls_offset $disk_image_name > mac/all_files.mac
 151 fls -m / -r -d -l -p -o $fls_offset $disk_image_name > mac/deleted_files.mac
 152 fls -m / -r -u -l -p -o $fls_offset $disk_image_name > mac/undeleted_files.mac
 153
 154 #Convert MAC times to Time Body:
 155 #===============================
 156 echo ""
 157 echo "Converting MAC times to Body Format..."
 158 cd $location/timeline/$image_name/$part_number/mac
 159 mactime -b all_files.mac -d -y -m -z EST5EDT | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / |

sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
../time/all_files.time

160 mactime -b deleted_files.mac -d -y -m -z EST5EDT | sed s/,/\ \ \|\ \ / | sed s/,/\ \
\|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \
\|\ \ / > ../time/deleted_files.time

161 mactime -b undeleted_files.mac -d -y -m -z EST5EDT | sed s/,/\ \ \|\ \ / | sed s/,/\ \
\|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \
\|\ \ / > ../time/undeleted_files.time

 162
 163 #Remove all MAC duplicates:
 164 #Some MAC objects may in double between all_files and deleted_files
 165 #===
 166 echo ""

DRDC Valcartier TM 2011-216 77

 167 echo "Removing all duplicates..."
 168 cd $location/timeline/$image_name/$part_number/time
 169 cat *.time | sort | uniq > files_timeline_sort_uniq.time
 170
 171 #Find all pertinent registry files:
 172 #==================================
 173 echo ""
 174 echo "Finding and processing registry files..."
 175 cd $location/timeline/$image_name/$part_number
 176 find $mount_point -depth -print0 | xargs -0 file | grep "MS\ Windows\ registry\ file"

| grep -v "NtServicePackUninstall" | grep -v "Uninstall" > registry.txt
 177 file_name_type_line_parser registry.txt reg
 178 cat reg | awk '{print "find \""$0"\" -depth -print | cpio -pamVd \"regfiles"$0"\""}' >

sh.sh
 179 sh sh.sh
 180 rm sh.sh registry.txt
 181 mv reg regfiles_found.txt
 182 find regfiles/ -type f -print | awk '{print "perl /usr/local/bin/regtime.pl -r \""$0"\" >>

mac/regtime.mac"}' > regtime.sh
 183 sh regtime.sh
 184 cd mac/
 185 mactime -b regtime.mac -d -y -m -z EST5EDT | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / |

sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
../time/regtime.time

 186 cd ..
 187 rm regtime.sh
 188
 189 #Find all pertinent EVT Event Log files:
 190 #=======================================
 191 echo ""
 192 echo "Finding and processing EVT event logs..."
 193 cd $location/timeline/$image_name/$part_number
 194 find $mount_point/ -depth -type f -print > out
 195 find_eventlog_signature out > out2
 196 cat out2 | grep "Windows Event Log" | grep -v "signature verification program." >

events
 197 file_name_type_line_parser events events2
 198 cat events2 | awk '{print "find \""$0"\" -depth -print | cpio -pamVd

\"eventlogs"$0"\""}' > sh.sh
 199 sh sh.sh
 200 rm sh.sh out2 events out
 201 mv events2 eventlogs_found.txt
 202 find eventlogs/ -type f -print | awk '{print "log2timeline -z EST5EDT -f evt \""$0"\" -

o mactime -w mac/eventlogs.mac"}' > eventlogs.sh
 203 sh eventlogs.sh
 204 rm eventlogs.sh
 205 cd mac

78 DRDC Valcartier TM 2011-216

 206 cat eventlogs.mac | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \
/ | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sort > out

 207 unixtime_to_systime
 208 rm out
 209 mv eventlogs.time ../time
 210
 211 #Find all pertinent EVTX Event Log files:
 212 #==
 213 echo ""
 214 echo "Finding and processing EVTX event logs..."
 215 cd $location/timeline/$image_name/$part_number
 216 find $mount_point -depth -print0 | xargs -0 file | grep "MS\ Windows\ Vista\ Event\

Log" | grep -v "NtServicePackUninstall" | grep -v "Uninstall" | grep -v ", empty" >
eventxlogs.txt

 217 file_name_type_line_parser eventxlogs.txt eventx
 218 cat eventx | awk '{print "find \""$0"\" -depth -print | cpio -pamVd

\"eventxlogs"$0"\""}' > sh.sh
 219 sh sh.sh
 220 rm sh.sh eventxlogs.txt
 221 mv eventx eventxlogs_found.txt
 222 find eventxlogs/ -type f -print | awk '{print "log2timeline -z EST5EDT -f evtx

\""$0"\" -o mactime -w mac/eventxlogs.mac"}' > eventxlogs.sh
 223 sh eventxlogs.sh
 224 cd mac/
 225 mactime -b eventxlogs.mac -d -y -m -z EST5EDT | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ /

| sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ /
> ../time/eventxlogs.time

 226 cd ..
 227 rm eventxlogs.sh
 228
 229 #Prefetch:
 230 #=========
 231 echo ""
 232 echo "Processing Windows prefetch..."
 233 log2timeline -z EST5EDT -f prefetch $mount_point/WINDOWS/Prefetch/ -o

mactime -w mac/prefetch.mac
234 mactime -b mac/prefetch.mac -d -y -m | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \

\|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
time/prefetch.time

 235
 236 #System Restore:
 237 #===============
 238 echo ""
 239 echo "Processing Windows restore point..."
 240 find $mount_point/System\ Volume\ Information/ -type d | grep "\{" | grep "\}" |

grep -v snapshot | grep -v "\/RP" | sort | uniq > out
241 cat out | awk '{print "log2timeline -z EST5EDT -f restore \""$0"\" -o mactime -w

mac/restore.mac"}' > sh.sh

DRDC Valcartier TM 2011-216 79

 242 sh sh.sh
 243 mactime -b mac/restore.mac -d -y -m | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \

\|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
time/restore.time

 244 rm out sh.sh
 245
 246 #Windows Shortcuts:
 247 #==================
 248 echo ""
 249 echo "Processing shortcuts..."
 250 find $mount_point -type f -print0 | xargs -0 file | grep -i -P '(MS\ Windows\

shortcut)' > shortcuts
 251 file_name_type_line_parser shortcuts shortcuts2
 252 cat shortcuts2 | awk '{print "log2timeline -z EST5EDT -f win_link \""$0"\" -o

mactime -w mac/shortcuts.mac"}' > sh.sh
 253 sh sh.sh
 254 rm shortcuts sh.sh
 255 mv shortcuts2 shortcuts_found.txt
 256 mactime -b mac/shortcuts.mac -d -y -m | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\

\ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
time/shortcuts.time

 257
 258 #Windows IE History.DAT
 259 #======================
 260 echo ""
 261 echo "Processing Internet Explorer history..."
 262 find $mount_point -type f -print0 | xargs -0 file | grep -i -P '(Internet\ Explorer\

cache\ file)' > ieindex
 263 file_name_type_line_parser ieindex ieindex2
 264 cat ieindex2 | awk '{print "log2timeline -z EST5EDT -f iehistory \""$0"\" -o mactime

-w mac/iehistory.mac"}' > sh.sh
 265 sh sh.sh
 266 mv ieindex2 ieindex_found.txt
 267 rm ieindex sh.sh
 268 mactime -b mac/iehistory.mac -d -y -m | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\

\ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
time/iehistory.time

 269
 270 #Search for Firefox history files
 271 #================================
 272 echo ""
 273 echo "Processing Firefox history..."
 274 find $mount_point -type f -iname "places.sqlite" > firefox3
 275 cat firefox3 | awk '{print "log2timeline -z EST5EDT -f firefox3 \""$0"\" -o mactime -

w mac/firefox3.mac"}' > sh.sh
 276 sh sh.sh
 277 mv firefox3 firefox3_found.txt
 278 rm sh.sh

80 DRDC Valcartier TM 2011-216

 279 mactime -b mac/firefox3.mac -d -y -m |sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \
\|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
time/firefox3.time

 280
 281 #Search for Setupapi Logs
 282 #========================
 283 echo ""
 284 echo "Processing setupapi logs..."
 285 find $mount_point/ -type f -print | grep -i -P '(setupapi\.log|setupapi\.del)' >

setupapi
286 cat setupapi | awk '{print "log2timeline -z EST5EDT -f setupapi \""$0"\" -o

mactime -w mac/setupapi.mac"}' > sh.sh
 287 sh sh.sh
 288 mv setupapi setupapi_found.txt
 289 rm sh.sh
 290 mactime -b mac/setupapi.mac -d -y -m | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\

\ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
time/setupapi.time

 291
 292 #Search for Windows firewall logs
 293 #================================
 294 echo ""
 295 echo "Processing firewall logs..."
 296 find $mount_point/ -type f -print | grep -i -P '(pfirewall\.log.)' > firewall
 297 cat firewall | awk '{print "log2timeline -z EST5EDT -f xpfirewall \""$0"\" -o mactime

-w mac/firewall.mac"}' > sh.sh
 298 sh sh.sh
 299 mv firewall firewall_found.txt
 300 rm sh.sh
 301 mactime -b mac/firewall.mac -d -y -m | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \

\|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
time/firewall.time

 302
 303 #Search for Flash cookies
 304 #========================
 305 echo ""
 306 echo "Processing Flash cookies..."
 307 find $mount_point/ -type f -iname *.sol -print0 | xargs -0 file | grep data | grep -v

"ASCII English text" > flash_cookies
 308 file_name_type_line_parser flash_cookies flash_cookies2
 309 cat flash_cookies2 | awk '{print "log2timeline -z EST5EDT -f sol \""$0"\" -o

mactime -w mac/flash.mac"}' > sh.sh
 310 sh sh.sh
 311 mv flash_cookies2 flash_cookies_found.txt
 312 rm flash_cookies sh.sh
 313 mactime -b mac/flash.mac -d -y -m | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\

\ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / | sed s/,/\ \ \|\ \ / >
time/flash.time

DRDC Valcartier TM 2011-216 81

 314
 315 #Generate final timeline listing:
 316 #================================
 317 echo ""
 318 echo "Generating final timeline..."
 319 cd time
 320 cat setupapi.time firewall.time flash.time firefox.time eventlogs.time

files_timeline_sort_uniq.time regtime.time iehistory.time shortcuts.time
restore.time prefetch.time | sort | uniq | grep -v "Date Size Type Mode UID GID
Meta File Name" > ../final_timeline/$image_name.$part_number.time.temp

 321
 322 file_name=../final_timeline/$image_name.$part_number.time.temp
 323
 324 while read line
 325 do
 326 echo "$image_name --> $line" >>

../final_timeline/$image_name.$part_number.time
 327 done <$file_name
 328 rm ../final_timeline/$image_name.$part_number.time.temp
 329
 330 #Unmount filesystem:
 331 #===================
 332 echo ""
 333 echo "Unmounting "$mount_point" = "$disk_image_name", offset = "$offset
 334 umount -d $mount_point

82 DRDC Valcartier TM 2011-216

B.2 C programs source code

B.2.1 C program: file_name_type_line_parser.c

Use of this code is pursuant to the terms specified in the Disclaimer (see Page viii) and C source
code and Bash shell script code disclosure licensing agreement (see Page xi).

1 /* This program aims to remove the file type description of a filetypes
2 * file generated by the UNIX 'file' command. The file type portion of the
3 * 'file' program’s output is denoted by the ":" character. This program
4 * finds that character and removes the rest of the line.
5 *
6 * However, to speed things up a bit this program will also perform some
7 * character substitution and replace all "$" characters it encounters with
8 * the escaped version "\$".
9 */
10 /* This program was written by Richard Carbone, DRDC Valcartier - 2010.
 * Last updated August 2011.
 * All rights reserved - Her Majesty the Queen in Right of Canada, as represented by

 * the Minister of National Defence, 2011.
 *

 * THIS PROGRAM CLEANS UP FIND/FILE COMMAND OUTPUT
 */
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14
15 FILE *file_types;
16 FILE *file_rpt;
17
18 int main(int argc, char **argv)
19 {
20 int argnum = 0;
21 int raw_byte = 0;
22 int bytes_read = 0;
23 char line_buffer[1024];
24
25 fprintf(stderr, "\nProgram written by Richard Carbone.\n");
26 fprintf(stderr, "DRDC Valcartier, 2011.\n\n");
27
28 if (argc != 3)
29 {
30 fprintf(stderr, "Error, program usage: %s [inputfilename] [outputfilename]\n",

argv[0]);
31 exit(1);
32 }

DRDC Valcartier TM 2011-216 83

33 if ((file_types = fopen(argv[1], "rb"))==NULL)
34 {
35 fprintf(stderr, "Error, unable to open input file %s\n", argv[1]);
36 exit(2);
37 }
38 file_rpt = fopen(argv[2], "wb");
39
40 while ((raw_byte = fgetc(file_types))!=EOF)
41 {
42 if (raw_byte != ':')
43 {
44 line_buffer[bytes_read] = raw_byte;
45 if (raw_byte == 36)
46 {
47 fprintf(file_rpt, "\\");
48 fprintf(file_rpt, "%c", line_buffer[bytes_read]);
49 bytes_read++;
50 }
51 else
52 {
53 fprintf(file_rpt, "%c", line_buffer[bytes_read]);
54 bytes_read++;
55 }
56 }
57 else if (raw_byte == ':')
58 {
59 memset(line_buffer, 0, sizeof(int) * 1024);
60 bytes_read = 0;
61 while ((raw_byte = fgetc(file_types))!='\n')
62 {
63 }
64 fprintf(file_rpt, "\n");
65 }
66 }
67
68 fclose(file_types);
69 fclose(file_rpt);
70
71 exit(0);
72 }

84 DRDC Valcartier TM 2011-216

B.2.2 C program: find_eventlog_signature.c

Use of this code is pursuant to the terms specified in the Disclaimer (see Page viii) and C source
code and Bash shell script code disclosure licensing agreement (see Page xi).

1 /* This program requires that find command be used to generate a file listing.
2 This program then reads in that file listing from the stdin and processes
3 its listed files to verify if they match the included file signature herein
4 below. This program can deal with Windows filenames of all sorts. Once
5 preliminary tests are done to verify that stdin infile is not EOF or NULL
6 processing begins. The file is read byte by byte until a \n chararcter is
7 found which denotes a new filename from the infile. Each byte is read as
8 an integer and is then copied to a buffer and upon reaching a \n the \n
9 character is not included in the buffer but is followed by a \0. The filename
10 in the buffer is opened for reading and str_size size bytes are read in and
11 compared to the signature. If a match is found the program states as much
12 otherwise it closes the file and proceeds to the next file. */
13 /* This program was written by Richard Carbone, DRDC Valcartier - 2010.
 Last updated August 2011.
 All rights reserved - Her Majesty the Queen in Right of Canada, as represented by

 the Minister of National Defence, 2011.

 THIS PROGRAM DETECTS XP (AND PRIOR) EVENT LOGS

 */
14
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18
19 #define str_size 8
20 #define sig_size 9
21 #define buffer_size 1024
22
23 FILE *input_file;
24 FILE *read_sig_file;
25
26 int main(int argc, char **argv)
27 {
28 int raw_byte = 0;
29 int bytes_read = 0;
30 char line_buffer[buffer_size];
31 char buffer[buffer_size];
32 char sig_event_log[] = {'\x30','\x00','\x00','\x00','\x4C','\x66','\x4C','\x65','\0'};
33
34 fprintf(stdout, "\nWindows Event Log signature verification program.\n");
35 fprintf(stdout, "\nWritten by Richard Carbone.\nDRDC Valcartier.\n2010.\n");
36 fprintf(stdout, "\n\n");

DRDC Valcartier TM 2011-216 85

37
38 if (argc != 2)
39 {
40 fprintf(stderr, "Error, program usage: %s [inputfilename]\n", argv[0]);
41 exit(1);
42 }
43
44 if ((input_file = fopen(argv[1], "r")) == NULL)
45 {
46 fprintf(stderr, "Error, unable to open input file %s\n", argv[1]);
47 exit(1);
48 }
49
50 while ((raw_byte = fgetc(input_file)) != EOF) //read from inputfile until EOF or \n
51 { if (raw_byte != '\n') //once \n reached copy to line_buffer
52 { line_buffer[bytes_read] = raw_byte; //and then open that file for reading
53 bytes_read++;
54 }
55 else if (raw_byte == '\n')
56 { line_buffer[bytes_read] = '\0';
57
58 read_sig_file = fopen(line_buffer, "rb");
59
60 if (NULL != fgets(buffer, sig_size, read_sig_file))
61 {
62 //fprintf(stderr, "File empty\n");
63 //memset(line_buffer, 0, sizeof(char) * buffer_size);
64 //break;
65 }
66
67 if (memcmp(buffer, sig_event_log, str_size) == 0)
68 { fprintf(stdout, "%s: Windows Event Log\n", line_buffer);
69 }
70
71 fclose(read_sig_file);
72 memset(line_buffer, 0, sizeof(char) * buffer_size);
73 bytes_read = 0;
74 }
75 }
76 fclose(input_file);
77
78 return(0);
79 }

86 DRDC Valcartier TM 2011-216

B.2.3 C program: unixtime_to_systime.c

Use of this code is pursuant to the terms specified in the Disclaimer (see Page viii) and C source
code and Bash shell script code disclosure licensing agreement (see Page xi).

0 /* This program was written by Richard Carbone, DRDC Valcartier - 2010.
 * Last updated August 2011.
 * All rights reserved - Her Majesty the Queen in Right of Canada, as represented by

 * the Minister of National Defence, 2011.
 *

 * THIS PROGRAM CONVERTS UNIX TIME TO SYSTEM TIME
 */
1 #include <time.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4
5 #define SIZE 256
6 #define BUFF_SIZE 4096
7
8 FILE *evtlog;
9 FILE *output;
10
11 int main (void)
12 {
13 char buffer[SIZE];
14 char message[BUFF_SIZE];
15 int raw_byte = 0;
16 char *tzone;
17 time_t timestamp;
18 char* format;
19 double filetime;
20 char buff1[10];
21 char buff2[100];
22 char buff3[100];
23
24 evtlog = fopen("out", "r");
25 output = fopen("eventlogs.time", "w");
26 while (fscanf(evtlog, "%lf", &filetime) != EOF)
27 {
28 timestamp = filetime;
29
30 format = "%Y %m %d %a %T";
31
32 tzone="TZ=EST";
33 putenv(tzone);
34 strftime(buffer, SIZE, format, localtime(×tamp));
35 fprintf(output, "%s", buffer);
36 fscanf(evtlog, "%s", &buff1);

DRDC Valcartier TM 2011-216 87

37 fscanf(evtlog, "%s", &buff2);
38 fscanf(evtlog, "%s", &buff3);
39 fprintf(output, " %s SID:%s\t\t\t\t\t\tMessage:", buff1, buff3);
40 while ((raw_byte = fgetc(evtlog)) != '\n')
41 {
42 fputc(raw_byte, output);
43 }
44 fprintf(output, "\n");
45 }
46
47 fclose(evtlog);
48 fclose(output);
49
50 return(0);
51 }

88 DRDC Valcartier TM 2011-216

This page intentionally left blank.

DRDC Valcartier TM 2011-216 89

Bibliography

AccessData. AccessData Forensic Toolkit. Informational web site. AccessData. 2010
http://accessdata.com/products/forensic-investigation/ftk.

André, Jean-Pierre. NTFS-3G: Extended Attributes. Informational web site. Tuxera.com. January
2011. http://b.andre.pagesperso-orange.fr/extended-attr.html.

Barika, Mridul Sankar, Guptab, Gaurav, et al. An efficient technique for enhancing forensic
capabilities of Ext2 file system. Technical report. Elsevier Digital Investigations 4S (2007) S55-
S61. 2007. http://www.dfrws.org/2007/proceedings/p55-barik.pdf.

Bennett, Hugh. Understanding Recordable & Rewritable DVD. Technical guide. First edition.
April 2004. Optical Storage Technology Association.
http://www.osta.org/technology/pdf/dvdqa.pdf.

Blunden, Bill and Below Gotham Labs. Anti-Forensics: The Rootkit Connection. Technical
report. Black Hat USA 2009. 2009. http://www.blackhat.com/presentations/bh-usa-
09/BLUNDEN/BHUSA09-Blunden-AntiForensics-PAPER.pdf.

Buchholz, Florian and Spafford, Eugene. On the role of file system metadata in digital forensics.
Technical report. Journal of Digital Investigation, Vol. 1(4), pp. 297-308. December 2004.

Buchholz, Florian. The structure of the Reiser file system. Technical document. Florian
Buchholz. January 2006. http://homes.cerias.purdue.edu/~florian/reiser/reiserfs.php.

Bunting, Steve, and Wei, William. EnCase Computer Forensics: The Official EnCE: EnCase
Certified Examiner Study Guide. Book. First edition. Wiley Publishing. 2006. ISBN-13: 978-
07821-4435-2.

Carbone, Richard. Developing a comprehensive approach for conducting a computer forensic
investigation under Linux: A generic approach for maximum evidentiary extraction in a broad
scope investigation (Draft). Technical Memorandum (Draft). Defence R&D Canada - Valcartier.

Carbone, Richard. File recovery and data extraction using automated data recovery tools: A
balanced approach using Windows and Linux when working with an unknown disk image and
filesystem. Technical note. Defence R&D Canada - Valcartier. TN 2009-161. September 2009.

Carrier, Brian. bodyfile. Informative/technical web page. Wiki.sleuthkit.org. January 2011.
http://wiki.sleuthkit.org/index.php?title=Body_file.

Carrier, Brian. FAT. Informative/technical web page. Wiki.sleuthkit.org. January 2011.
http://www.forensicswiki.org/wiki/FAT.

Carrier, Brian. File System Forensic Analysis. Book. First edition. Addison Wesley Publishing.
2005. ISBN: 0-32-126817-2.

90 DRDC Valcartier TM 2011-216

Carrier, Brian. Fls. Informative/technical web page. Wiki.sleuthkit.org. January 2011.
http://wiki.sleuthkit.org/index.php?title=Fls.

Carrier, Brian. Mactime output. Informative/technical web page. Wiki.sleuthkit.org. January
2011. http://wiki.sleuthkit.org/index.php?title=Mactime_output.

Carrier, Brian. Mactime. Informative/technical web page. Wiki.sleuthkit.org. January 2011.
http://wiki.sleuthkit.org/index.php?title=Mactime.

Carrier, Brian. Metadata Address. Informative/technical web page. Wiki.sleuthkit.org. January
2011. http://wiki.sleuthkit.org/index.php?title=Metadata_address.

Carrier, Brian. NTFS Implementation Notes. Informative/technical web page. Wiki.sleuthkit.org.
January 2011. http://wiki.sleuthkit.org/index.php?title=NTFS_Implementation_Notes.

Carrier, Brian. NTFS. Informative/technical web page. Wiki.sleuthkit.org. January 2011.
http://www.forensicswiki.org/wiki/NTFS.

Carrier, Brian. The Sleuth Kit Overview and Automated Scanning Features. Presentation. Sleuth
Kit and Open Source Digital Forensics Conference June 9, 2010. June 2010.
http://www.basistech.com/conference/2010/osdf-slides/carrier-sleuthkitoverview.pdf.

Carrier, Brian. The Sleuth Kit: Description. Informational web site. Sleuthkit.org. 2010.
http://www.sleuthkit.org/sleuthkit/desc.php.

Carrier, Brian. Timelines. Informative/technical web page. Wiki.sleuthkit.org. January 2011.
http://wiki.sleuthkit.org/index.php?title=Timeline.

Carvey, Harlan. Timeline Analysis Part 3 : Log2timeline. Blog. Windowsir.blogspot.com. March
2010. http://thedigitalstandard.blogspot.com/2010/03/timeline-analysis-part-3-log2timeline.html.

Carvey, Harlan. Timeline Analysis Part I : Creating a Timeline of a Live Windows System. Blog.
Windowsir.blogspot.com. March 2010. http://thedigitalstandard.blogspot.com/2010/03/creating-
timeline-of-live-windows.html.

Carvey, Harlan. TimeLine Analysis part II (Sources). Blog. Windowsir.blogspot.com. February
2009. http://windowsir.blogspot.com/2009/02/timeline-analysis-part-ii-sources.html.

Carvey, Harlan. TimeLine Analysis, part III. Blog. Windowsir.blogspot.com. February 2009.
http://windowsir.blogspot.com/2009/02/timeline-analysis-pt-iii.html.

Carvey, Harlan. Timeline Analysis, part VI - Taking Another Step. Blog.
Windowsir.blogspot.com. April 2009. http://windowsir.blogspot.com/2009/04/timeline-analysis-
pt-vi-taking-another.html.

Carvey, Harlan. Timeline Creation and Analysis. Blog. Windowsir.blogspot.com. March 2010.
http://windowsir.blogspot.com/2010/03/timeline-creation-and-analysis.html.

DRDC Valcartier TM 2011-216 91

Carvey, Harlan. Windows Forensic Analysis DVD Toolkit. Book. First edition. Syngress
Publishing. 2007. ISBN-13: 978-1-59749-156-3.

Casey, Eoghan. Handbook of Computer Crime Investigation: Forensic Tools and Technology.
Book. First edition. Academic Press. 2003. ISBN: 0-12-163103-6.

Charter, Brandon. EVTX and Windows Event Logging. Technical report. SANS Institute. 2008.
http://www.sans.org/reading_room/whitepapers/logging/evtx-windows-event-logging_32949.

Cloppert, Michael. Building a complete timeline for intrusion cases. Blog. SANS Institute.
December 2008. http://computer-forensics.sans.org/blog/2008/12/29/building-a-complete-
timeline-for-intrusion-cases/.

Cloppert, Michael. Ex-Tip: An Extensible Timeline Analysis Framework in Perl. Technical
report. SANS Institute. May 2008. http://www.sans.org/reading_room/whitepapers/forensics/ex-
tip-extensible-timeline-analysis-framework-perl_32767.

Compaq Information Technologies Group. Guide to OpenVMS File Applications. Technical
guide. Compaq Information Technologies Group. 2002. Order Number: AA-PV6PE-TK.
http://h71000.www7.hp.com/doc/731final/documentation/pdf/ovms_731_file_app.pdf.

Compaq Information Technologies Group. OpenVMS Guide to Extended File Specifications.
Technical guide. Compaq Information Technologies Group. 2002. Order Number: AA-REZRB-
TE. http://h71000.www7.hp.com/doc/731final/documentation/pdf/ovms_731_efs_gd.pdf.

Craiger, Philip and Burke, Paul K. Mac Forensics: Mac OS X and the HFS+ File System.
Technical report. University of Central Florida and National Centre for Forensic Science.
http://www2.tech.purdue.edu/cit/Courses/cit556/readings/MacForensicsCraiger.pdf.

Custer, Helen. Inside the Windows NT File System. Book. First edition. Microsoft Press. 1994.
ISBN: 1-55615-660-X.

Dahon, Indra. Live Forensics: Forensic Tool: EnCase or FTK. Informational web site.
Liveforensic.blogspot.com. September 2009. http://liveforensic.blogspot.com/2009/09/forensic-
tool-encase-or-ftk.html.

Dowling, Anthony. Digital Forensics: A Demonstration of the Effectiveness of The Sleuth Kit
and Autopsy Forensic Browser. Master’s thesis. University of Otago, Dunedin, New Zealand.
May 2006. http://eprints.otago.ac.nz/357/1/DowlingAcombOcr.pdf.

Dowling, Anthony. The Sleuth Kit v2.01 and Autopsy Forensic Browser Demonstration.
Technical guide. June 2006.

Eager, Bob. Implementation of extended attributes on the FAT file system. Informational web
site. Tavi Systems. October 2000. http://www.tavi.co.uk/os2pages/eadata.html.

EC-Council. Computer Hacking Forensic Investigator: Courseware Manual version 3.0.
Courseware. Volume 1, 2, and 3. Third edition. EC-Council.

92 DRDC Valcartier TM 2011-216

Eckstein, Knut. Forensics for Advanced UNIX File Systems. Technical report. NATO C3
Agency. Published in 2004 IEEE/USMA IA Workshop. 2004.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1437842.

ECMA International. Volume and File Structure of CDROM for Information Interchange.
Technical report. Second edition. ECMA International. December 1987. http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-119.pdf.

Fairbanks, Kevin D., Lee, Christopher P. and Henry L. Owen III. Forensic Implications of Ext4.
Technical report. School of Electrical and Computer Engineering, Georgia Institute of
Technology. 2010. http://delivery.acm.org/10.1145/1860000/1852691/a22-
fairbanks.pdf?key1=1852691&key2=3418706921&coll=DL&dl=ACM&CFID=6873414&CFTO
KEN=12508791.

Farmer, Dan, and Venema, Wietse. Forensic Discovery. Book. First edition. Addison-Wesley
Publishing. January 2005. ISBN-13: 978-0201634976.

Farmer, Dan. What Are Mactimes? Online article. Dr. Dobb’s Journal. October 2000.
http://drdobbs.com/184404275.

Ford, Michael T. Analyses of Italian Malware, Romanian Rootkits, and United States Computer
Law. Technical report. SANS Institute. March 2003.

Free 60. FATX. Online information resource. Free 60. December 2010.
http://www.free60.org/FATX.

Gelinas, Jacques. UMSDOS HOW-TO. Howto guide. Version 1.2. The Linux Documentation
Project. December 2001. ftp://ftp.eenet.ee/doc/LDP/HOWTO/UMSDOS-HOWTO.html.

Giampaolo, Dominic. Practical File System Design with the Be File System. Book. First edition.
Morgan Kaufmann Publishers. 1999. ISBN: 1-55860-497-9.

Grundy, Barry J. The Law Enforcement and Forensic Examiner’s Introduction to Linux: A
Practitioner’s Guide to Linux as a Computer Forensic Platform. Book. Version 3.78. December
2008. http://www.linuxleo.com/Docs/linuxintro-LEFE-3.78.pdf.

Gudjonsson, Kristinn. Artifact Timeline Creation and Analysis - part 2. Blog. SANS Institute.
August 2009. http://computer-forensics.sans.org/blog/2009/08/14/artifact-timeline-creation-and-
analysis-part-2/.

Gudjonsson, Kristinn. Log2timeline. Informational web site. Log2timeline.net. 2010.
http://log2timeline.net/.

Gudjonsson, Kristinn. Mastering the Super Timeline with log2timeline. Technical report. SANS
Institute. June 2010. http://www.sans.org/reading_room/whitepapers/logging/mastering-super-
timeline-log2timeline_33438.

Gudjonsson, Kristinn. Mastering the Super Timeline: log2timeline style. Presentation. The 2010
European Community Digital Forensics and Incident Response Summit, London 2010. 2010.

DRDC Valcartier TM 2011-216 93

http://computer-forensics.sans.org/summit-archives/2010/files/eu-digital-forensics-incident-
response-summit-kristinn-gudjonsson-mastering-the-super-timeline.pdf.

Guidance Software. Guidance Software Encase Forensic Edition. Informational web site.
Digitalintelligence.com. http://www.digitialintelligence.com/software/guidancesoftware/encase/.

Hewlett-Packard. HP-UX Release 11.0 System Calls and File Formats Sections 2 and 4.
Technical reference. Edition 1. Volume 3 of 5. Document No.: B2355-90166. 1997.
http://docs.hp.com/en/B2355-90682.pdf.

Hewlett-Packard. HP-UX Release 11.0 System Calls and File Formats Sections 2 and 4.
Technical reference. Edition 1. Volume 3 of 5. Document No.: B2355-90166. 1997.

Hinner, Martin. Filesystems HOWTO. Howto guide. Version 0.8. The Linux Documentation
Project. January 2007. http://www.ibiblio.org/pub/linux/docs/howto/other-
formats/pdf/Filesystems-HOWTO.pdf.

Howlett, Tony. Open Source Security Tools. Book. First edition. Prentice Hall. July 2004. No.: 0-
321-19443-8.

Ionescu, Alex. NTFS On-Disk Structure: VisualBasic NTFS Programmer’s Guide. Technical
guide. Relsoft Technologies. 2004. http://www.alex-ionescu.com/NTFS.pdf.

Jeffris, Clarke L. The Coroners Toolkit – In depth. Technical report. SANS Institute. 2002.

Klein, Helge. Command Line-Version (SetACL.exe) Syntax and Description. Technical
description/informational web site. Helgeklein.com. 2011.
http://helgeklein.com/setacl/documentation/command-line-version-setacl-exe/.

Kubasiak, Ryan R. Macintosh Forensics: A Guide for the Forensically Sound Examination of a
Macintosh Computer. Technical guide. New York State Troopers. May 2007.
http://www.appleexaminer.com/Downloads/MacForensics.pdf.

Lee, Rob. Digital Forensic SIFT'ing: Registry and Filesystem Timeline Creation. Blog. SANS
Institute. February 2009. http://computer-forensics.sans.org/blog/2009/02/24/digital-forensic-
sifting-registry-and-filesystem-timeline-creation/.

Lee, Rob. Shadow Timelines And Other VolumeShadowCopy Digital Forensics Techniques with
the Sleuthkit on Windows. Blog. SANS Institute. March 2010. http://computer-
forensics.sans.org/blog/2010/03/16/shadow-timelines-and-other-shadowvolumecopy-digital-
forensics-techniques-with-the-sleuthkit-on-
windows/?utm_source=rss&utm_medium=rss&utm_campaign=shadow-timelines-and-other-
shadowvolumecopy-digital-forensics-techniques-with-the-sleuthkit-on-windows.

Lui, John C.S. Minix File System. Intro. Course notes (professor).
http://www.edugrid.in/webfolder/OpSystems/9_FileSystems/Chinese_Univ/supplement_minix_fs
.pdf.

94 DRDC Valcartier TM 2011-216

Mauro, Jim and McDougall, Richard. Solaris Internals: Core Kernel Components. Book. First
edition. Sun Microsystems Press. 2000. ISBN: 0-13-022496-0.

Microsoft Corporation. Microsoft Extensible Firmware Initiative FAT32 File System
Specification: FAT: General Overview of On-Disk Format. Version 1.03. Whitepaper. Microsoft
Corporation. December 2000.

Middleton, Bruce. Cyber Crime Field Handbook. Book. First edition. Auerbach Publishing. 2002.
ISBN: 0-8493-1192-6.

Migletz, James. Automated Metadata Extraction. Master’s thesis. Naval Postgraduate School.
June 2008. http://simson.net/clips/students/08Jun_Migletz.pdf.

Miller, III, Roland E. Analysis of an unknown Mac OS X Public Beta System Using Mac OS X
10. Technical report. SANS Institute. September 2002.

Mueller, Lance. Detecting timestamp changing utilities. Blog. Www.forensickb.com. February
2009. http://www.forensickb.com/2009/02/detecting-timestamp-changing-utlities.html.

Naval Postgraduate School. Fiwalk. Informational web site. DEEP: Digital Evaluation and
Exploitation, Department of Computer Science, Naval Postgraduate School.
http://domex.nps.edu/deep/Fiwalk.html.

Nelson, Bill, Phillips, Amelia, and Christopher Steuart. Guide to Computer Forensics and
Investigations. Book. Third edition. Cengage Learning. 2009. ISBN-13: 978-1-435-49883-9.

Newbigin, John. John’s spec of the second extended filesystem. Informational web site. John
Newbigin. http://uranus.chrysocome.net/explore2fs/es2fs.htm.

Nikkel, Bruce J. Forensic Analysis of GPT Disks and GUID Partition Tables. Technical report.
The International Journal of Digital Forensics and Incident Response Vol. 6, No. 1-2
(doi:10.1016/j.diin.2009.07.001). November 2009.

NTFS.com. NTFS File System Structure, Recovery Software, Hard Disk Internals. Informational
web site. NTFS.com. 2011. http://www.ntfs.com.

O’Keefe, Patrick B. Installing The Coroner’s Toolkit and using the mactime utility. Technical
document. University of South Carolina, Department of Computer Science.
http://www.csc.sc.edu/~okeefe/tutorials/cert/i046.01.html.

Obialero, Roberto. Forensic Analysis of a Compromised Intranet Server. Technical report. SANS
Institute. March 2006. http://www.sans.org/reading_room/whitepapers/forensics/forensic-
analysis-compromised-intranet-server_1652.

Optical Storage Technology Association. Universal Disk Format Specification. Technical report.
Optical Storage Technology Association. March 2005. http://www.osta.org/specs/pdf/udf260.pdf.

Pate, Steve D. UNIX Filesystems: Evolution, Design, and Implementation (Veritas Series). Book.
First edition Wiley Publishing. 2003. ISBN: 0-471-16483-6.

DRDC Valcartier TM 2011-216 95

Plaugher, P.J. The Standard C Library. Book. First edition. 1991. ISBN.:0-13-131509-9.

Poirier, Dave. The Second Extended File System: Internal Layout. Technical report. Dave Poirier.
2009. http://www.giis.co.in/ext2.pdf.

Quale, Doug, Lu, H.J, et al. Mount man file. Man page. Util-linux-ng. Version 0.97.3

Shinder, Debra Littlejohn and Tittel, Ed. Scene of the Cybercrime Computer Forensics
Handbook. Book. Syngress Publishing. 2002. ISBN: 1-931836-65-5.

Shullich, Robert. Reverse Engineering the Microsoft Extended FAT File System (exFAT).
Technical report. SANS Institute. December 2009.
http://www.sans.org/reading_room/whitepapers/forensics/reverse-engineering-microsoft-exfat-
file-system_33274.

Silicon Graphics Inc. IRIX System Administration I. Courseware. Silicon Graphics. May 2004.
ISA1-1.4-SM.

Stephenson, Peter. Investigating Computer-Related Crime: A Handbook for Corporate
Investigations. Book. First edition. CRC Press. 2000. ISBN: 0-8493-2218-9.

Summers, Clayton. Introduction to ISO 9660: what it is, how it is implemented, and how it has
been extended. Technical report. Disc Manufacturing Inc. May 1995.
http://www.pandreonline.com/documentos/cds/iso9660/norma.pdf.

Tweedie, Stephen. EXT3, Journalling Filesystem. Technical document. Stephen Tweedie. July
2000. http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html.

Unknown author. I see what you did there: Time stamps in digital forensics. Presentation.
Unknown date. http://trustedsignal.com/presos/forensic_time_lines.pdf.

Venema, Wietse. Journaling file system forensics. Presentation. 2007.

Vogels, Werner. File system usage in Windows NT 4.0. Technical report. 17th ACM Symposium
on Operating Systems Principles (SOSP’99), Published as Operating Systems Review 34(5):93-
109, Dec. 1999. Department of Computer Science, Cornell University. December 1999.

Volonino, Linda and Anzaldua, Reynaldo. Computer Forensics for Dummies. Book. First edition.
Wiley Publishing. 2008. ISBN: 978-0-470-37191-6.

Wang, Wenguang. Wenguang’s Introduction to Universal Disk Format (UDF). Informational web
site. Wenguang Weng. February 2009.
http://homepage.mac.com/wenguangwang/myhome/udf.html.

Watson, Bob. Accdate. Informational web site. Bob Watson. June 2000.
http://www.lagmonster.org/docs/DOS7/x-accdate.html.

96 DRDC Valcartier TM 2011-216

Weise, Joel and Powell, Brad. Using Computer Forensics When Investigating System Attacks.
Sun Blueprint/Technical report. Revision 1.0. Part No.: 819-2262-10. Sun Microsystems. April
2005. http://www.sun.com/blueprints/0405/819-2262.pdf.

Wikipedia. Access control list. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/Access_control_list.

Wikipedia. Advanced Disc Filing System. Online encyclopaedic entry. Wikimedia Foundation
Inc. July 2010. http://en.wikipedia.org/wiki/Advanced_Disc_Filing_System.

Wikipedia. Andrew Filing System. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/Andrew_File_System.

Wikipedia. Attrib. Online encyclopaedic entry. Wikimedia Foundation Inc. August 2010.
http://en.wikipedia.org/wiki/Attrib.

Wikipedia. Be File System. Online encyclopaedic entry. Wikimedia Foundation Inc. December
2010. http://en.wikipedia.org/wiki/Be_File_System.

Wikipedia. BeOS. Online encyclopaedic entry. Wikimedia Foundation Inc. December 2010.
http://en.wikipedia.org/wiki/BeOS.

Wikipedia. Btrfs. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/Btrfs.

Wikipedia. Cacls. Online encyclopaedic entry. Wikimedia Foundation Inc. December 2010.
http://en.wikipedia.org/wiki/Cacls.

Wikipedia. CD-RW. Online encyclopaedic entry. Wikimedia Foundation Inc. March 2011.
http://en.wikipedia.org/wiki/CD-RW.

Wikipedia. Comparison of file systems. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/Comparison_of_file_systems.

Wikipedia. Cramfs. Online encyclopaedic entry. Wikimedia Foundation Inc. December 2010.
http://en.wikipedia.org/wiki/Cramfs.

Wikipedia. DVD+RW. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/DVD%2BRW.

Wikipedia. Exchangeable image file format. Online encyclopaedic entry. Wikimedia
Foundation Inc. June 2011. http://en.wikipedia.org/wiki/Exchangeable_image_file_format.

Wikipedia. exFAT. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/ExFAT.

Wikipedia. Ext2. Online encyclopaedic entry. Wikimedia Foundation Inc. December 2010.
http://en.wikipedia.org/wiki/Ext2.

DRDC Valcartier TM 2011-216 97

Wikipedia. Ext3. Online encyclopaedic entry. Wikimedia Foundation Inc. December 2010.
http://en.wikipedia.org/wiki/Ext3.

Wikipedia. Ext4. Online encyclopaedic entry. Wikimedia Foundation Inc. December 2010.
http://en.wikipedia.org/wiki/Ext4.

Wikipedia. Extended file attributes. Online encyclopaedic entry. Wikimedia Foundation Inc.
March 2011. http://en.wikipedia.org/wiki/Extended_file_attributes.

Wikipedia. Extent (file systems). Online encyclopaedic entry. Wikimedia Foundation Inc.
November 2010. http://en.wikipedia.org/wiki/Extent_(file_systems).

Wikipedia. File Allocation Table. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/File_Allocation_Table.

Wikipedia. Files-11. Online encyclopaedic entry. Wikimedia Foundation Inc. December 2010.
http://en.wikipedia.org/wiki/Files-11.

Wikipedia. Filesystem in Userspace. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/Filesystem_in_Userspace.

Wikipedia. Filesystem permissions. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/File_system_permissions.

Wikipedia. Fork (filesystem). Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/Fork_(filesystem).

Wikipedia. HFS Plus. Online encyclopaedic entry. Wikimedia Foundation Inc. December 2010.
http://en.wikipedia.org/wiki/HFS_Plus.

Wikipedia. Hierarchical File. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/Hierarchical_File_System.

Wikipedia. High Performance File System. Online encyclopaedic entry. Wikimedia Foundation
Inc. January 2011. http://en.wikipedia.org/wiki/High_Performance_File_System.

Wikipedia. Inode pointer structure. Online encyclopaedic entry. Wikimedia Foundation Inc. July
2010. http://en.wikipedia.org/wiki/Inode_pointer_structure.

Wikipedia. Inode. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/Inode.

Wikipedia. Intrusion detection system. Online encyclopaedic entry. Wikimedia Foundation Inc.
March 2011. http://en.wikipedia.org/wiki/Intrusion_detection_system.

Wikipedia. ISO 9660. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/ISO_9660.

98 DRDC Valcartier TM 2011-216

Wikipedia. JFS (file system). Online encyclopaedic entry. Wikimedia Foundation Inc. December
2010. http://en.wikipedia.org/wiki/JFS_(file_system).

Wikipedia. Journaling file system. Online encyclopaedic entry. Wikimedia Foundation Inc.
December 2010. http://en.wikipedia.org/wiki/Journaling_file_system.

Wikipedia. MAC times. Online encyclopaedic entry. Wikimedia Foundation Inc. November
2010. http://en.wikipedia.org/wiki/MAC_times.

Wikipedia. MINIX file system. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/MINIX_file_system.

Wikipedia. Network intrusion detection system. Online encyclopaedic entry. Wikimedia
Foundation Inc. February 2011.
http://en.wikipedia.org/wiki/Network_intrusion_detection_system.

Wikipedia. Next3. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/Next3.

Wikipedia. NTFS. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/NTFS.

Wikipedia. POSIX C library. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/C_POSIX_library.

Wikipedia. POSIX. Online encyclopaedic entry. Wikimedia Foundation Inc. March 2011.
http://en.wikipedia.org/Posix.

Wikipedia. QNX4FS. Online encyclopaedic entry. Wikimedia Foundation Inc. March 2010.
http://en.wikipedia.org/wiki/QNX4FS.

Wikipedia. ReiserFS. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/ReiserFS.

Wikipedia. Romfs. Online encyclopaedic entry. Wikimedia Foundation Inc. June 2010.
http://en.wikipedia.org/wiki/Romfs.

Wikipedia. Standard C library. Online encyclopaedic entry. Wikimedia Foundation Inc. February
2011. http://en.wikipedia.org/wiki/Standard_C_library.

Wikipedia. Stat (Unix). Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/stat_(Unix).

Wikipedia. Transaction-Safe FAT File System. Online encyclopaedic entry. Wikimedia
Foundation Inc. December 2010. http://en.wikipedia.org/wiki/TFAT.

Wikipedia. Universal Disk Format. Online encyclopaedic entry. Wikimedia Foundation Inc.
December 2010. http://en.wikipedia.org/wiki/Universal_Disk_Format.

DRDC Valcartier TM 2011-216 99

Wikipedia. Unix File System. Online encyclopaedic entry. Wikimedia Foundation Inc. November
2010. http://en.wikipedia.org/wiki/Unix_File_System.

Wikipedia. Unix time. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/Unix_time.

Wikipedia. VERITAS File System. Online encyclopaedic entry. Wikimedia Foundation Inc.
January 2011. http://en.wikipedia.org/wiki/VERITAS_File_System.

Wikipedia. VHD (file format). Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/VHD_(file_format).

Wikipedia. Virtual disk image. Online encyclopaedic entry. Wikimedia Foundation Inc. January
2011. http://en.wikipedia.org/wiki/Virtual_disk_image.

Wikipedia. VMDK. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/VMDK.

Wikipedia. ZFS. Online encyclopaedic entry. Wikimedia Foundation Inc. January 2011.
http://en.wikipedia.org/wiki/ZFS.

X-Ways Software Technology AG. X-Ways Forensics: Integrated Computer Forensics Software.
Informational web site. X-Ways Software Technology AG. http://www.x-ways.net/forensics.

100 DRDC Valcartier TM 2011-216

List of symbols/abbreviations/acronyms/initialisms

ABI Application Binary Interface

ADFS Advanced Disc Filing System

ACL Access Control List

ADS Alternate Data Stream

AFF Advanced Forensics Format

AFFS Amiga Fast File System

AIX Advanced Interactive eXecutive

AKA Also Known As

API Application Programming Interface

ANSI American National Standards Institute

atime Access time

AV Anti-Virus

Bash Bourne-again shell

BD-RW Blu-Ray Disc – ReWritable

BeFS Be File System

BeOS Be Operating System

BSD Berkeley Software Distribution

Btrfs B-Tree Filesystem

CD Compact Disc

CD-ROM Compact Disc - Read Only Memory

CD-RW Compact Disc – ReWritable

CDFS Compact Disc File System / See ISO 9660

CEF Common Exchange Format

CPU Central Processing Unit

CramFS Compressed ROM File System

crtime Creation time

CSV Comma-Separated Values

ctime Last change time

DRDC Valcartier TM 2011-216 101

DACL Discretionary Access Control List

DEC Digital Equipment Corporation

DNS Domain Name Service

DOS Disk Operating System

DVD Digital Video Disc / Digital Versatile Disc

DVD-RW Digital Video Disc – ReWritable / Digital Versatile Disc –
ReWritable

EFS Extent File System

EST5EDT Eastern Standard Time, time zone 5, Eastern Daylight Time

EVT Windows Event Log files (pre-Vista)

EVTX Windows Event Log files (Vista and newer)

EWF Export Witness Compression Format

EXIF EXchangeable Image File Format

exFAT Extended File Allocation Table

Ext2/3/4 Second Extended Filesystem/Third Extended Filesystem/Fourth
Extended Filesystem

FAT12/FAT16/FAT32 File Allocation Table 12-bit/File Allocation Table 16-bit/File
Allocation Table 32-bit

FFS Fast File System

FTK Forensic ToolKit

FUSE Filesystem in Userspace

GB Gigabyte

GID Group ID

GUI Graphical User Interface

HFS Hierarchical File System

HFS+ Hierarchical File System Plus/+

HPFS High Performance File System

HTML HyperText Markup Language

I/O Input/Output

IBM International Business Machine Inc.

ID Identification

102 DRDC Valcartier TM 2011-216

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

ISO 9660 International Organization for Standardization 9660

JFS Journaled File System

MAC Modify, Access, Change

MAC Media Access Control (address)

MB Megabyte

MFT Master File Table

mtime Modification time

NIDS Network Intrusion Detection System

NTFS New Technology File System

OpenVMS Open Virtual Memory System

OS Operating System

OS/2 Operating System/2

PC Personal Computer

PCAP Packet CAPture

Perl Practical Extraction and Report Language

POSIX Portable Operating System Interface for UNIX

QNX4FS QNX System 4 File System

R&D Research & Development

RAID Redundant Array of Inexpensive Disks

Reiser4 Reiser 4

ReiserFS Reiser File System

RFS See ReiserFS

RISC Reduced Instruction Set Code

ROM Read-Only Memory

ROMFS Read-Only Memory File System / ROM File System

SAM Security Accounts Manager

SANS SysAdmin, Audit, Networking, and Security

SDXC Secure Digital eXtended Capacity

DRDC Valcartier TM 2011-216 103

SGI Silicon Graphics Inc.

SGID Setgid/Set Group ID

SID System ID (Windows)

SP/SP1 Service Pack/Service Pack 1

SUID Setuid/Set User ID

SysV System V

TB Terabyte

TLN TimeLiNe

TFAT Transaction-safe FAT

UDF Universal Disk Format

UFS UNIX file system

UID User ID

UTC Universal Time, Coordinated

VAX Virtual Address eXtension

VDI Virtual Disk Image

VHD Virtual Hard Disk

VMDK Virtual Machine Disk

VxFS Veritas File System

XFS eXtended File System

XML eXtensible Markup Language

ZFS Zettabyte File System

104 DRDC Valcartier TM 2011-216

Glossary

ACL (Access Control List)

An ACL is a list of permissions which can be associated to files, directories or other
operating system-specific objects. ACLs are used to assign additional permissions to system
objects in order to specify in a more fine-tuned manner the permissions associated to said
object(s). ACLs are generally applied on top of DACL-based permissions.

ADFS (Advanced Disk Filing System)

ADFS is a filesystem native to Acorn and RISC OS computer systems. This filesystem is
natively supported by Linux.

AFFS (Amiga Fast File System)

AFFS is a filesystem native to the Amiga personal computer. This filesystem is natively
supported by Linux.

Bash (Bourne-again shell)

See Command Shell for more information.

BeOS (Be Operating System)

BeOS is an early 1990s PC-based operating system which was to compete against other
popular operating systems at the time. Its native filesystem is BeFS.

BeFS (Be File System)

BeFS is a filesystem for the PC-based BeOS operating system. It was a highly advanced
filesystem for its time. This filesystem is natively supported by Linux.

Bodyfile

The Bodyfile format is a preliminary timeline format which is used as a mid-point between a
filesystem’s raw date/time metadata structures and a readable text-based timeline. It was first
proposed by Farmer/Venema and used with their forensic software suite TCT and is also used
by TSK as its intermediate timeline format. It is a more complete and complex intermediate
format than TLN.

Btrfs (B-Tree Filesystem)

Btrfs is an advanced native Linux filesystem developed by Chris Mason of Oracle Corp.
which is set to eventually supersede the Ext4 filesystem. This filesystem is natively supported
by Linux.

C

C is a high-level computer programming language and is the basis for all UNIX-based
operating systems which rely extensively on its built-in library functions. Different standards

DRDC Valcartier TM 2011-216 105

have existed over the years but C is now governed by ANSI and has subsequently become an
ANSI standardized programming language.

CDFS (Compact Disc File System)

CDFS is the standard filesystem for CD-based optical media although it is easily extended to
DVD-based media. This filesystem is natively supported by Linux.

Coherent

Coherent is an older UNIX System V filesystem found on some SysV systems.

Command Shell

The Command Shell is the system command line interpreter and can, under UNIX systems,
take the form of many different command shells including Bash, ksh, csh, tcsh, zsh, ash and
many others. The Command Shell interprets the commands input by the user or operator and
translates them into actionable commands for the operating system kernel which is then
requested to perform some useful work on behalf of the user or operator.

CramFS (Compressed ROM File System)

CramFS is a filesystem similar to ROMFS except that it is a compressed ROM filesystem and
it is commonly found in embedded devices. This filesystem is natively supported by Linux.

DACL (Discretionary Access Control List)

A DACL is a series of permissions generally attributed to files and directories but can
sometimes be applied to other operating system objects. DACLs define the permissions that
users, groups and the public have with respect to various system objects. DACLs differ from
ACLs in that they are the default permissions applied to objects whereas ACLs expand upon
default object permissions by providing or removing additional authorizations.

DOS (Disk Operating System)

DOS is a very common computer operating system found in the 1980s and early 90s. It was
the operating system of choice on PCs until 32-bit versions of Windows came to market. It is
now outdated and has not been improved upon since the mid 1990s; however, it is still
prevalent for those conducting troubleshooting and diagnostic-related work on a PC.
Microsoft was the largest developer and distributor of DOS, although other alternatives
existed.

DOS attributes

Four specific DOS attributes exist. The first is R for read-only. An attribute of A states the file
is ready for archiving. Finally, S and H state that the file is a system or hidden file,
respectively. DOS Attributes can be associated to files and directories.

106 DRDC Valcartier TM 2011-216

EFS (Extent File System)

EFS is a native filesystem to older SGI workstations, servers and supercomputers. It is
commonly found as the default filesystem on SGI software installation CD-ROMs. This
filesystem is natively supported by Linux.

EnCase

EnCase is a computer digital forensic software developed and sold by Guidance Software
which is very popular among law enforcement.

Epoch time

Epoch time, also called UNIX time, starts January 1, 1970, 12:00 am UTC. It is a second-
base time system and is the accumulation of seconds since the beginning of Epoch time until
a given moment in the present. It is also commonly known as UNIX or POSIX time and in its
32-bit form is set to expire in 2038.

EXIF (EXchangeable Image File Format)

A digital standard used for storing and extracting information tags from digital files including
but not limited to images, videos, documents, etc.

exFAT (Extended File Allocation Table)

exFAT is a Windows supported 64-bit implementation of FAT. It is supported by Linux as a
FUSE-based filesystem.

Ext2 (Second Extended Filesystem)

Ext2 is a native filesystem of the Linux operating system. This filesystem is natively
supported by Linux.

Ext3 (Third Extended Filesystem)

Ext3 is a native filesystem based of the Linux operating system based on Ext2 which
provides a filesystem journaling capability. This filesystem is natively supported by Linux.

Ext4 (Fourth Extended Filesystem)

Ext4 is the latest Ext-based filesystem of the Linux operating system which supersedes
Ext2/3. It continues providing filesystem journaling. It also provides greater performance,
reliability and allows for much larger file and filesystem sizes. This filesystem is natively
supported by Linux.

Extent

An extent is a chunk or piece of filesystem space which is contiguous in nature and is
specifically used for storage. Unlike an inode, an extent does not store information about a
given file. Extents are used to further reduce filesystem fragmentation.

DRDC Valcartier TM 2011-216 107

Extended attribute

Extended attributes are specialized filesystem structures designed to hold filesystem
metadata. This metadata is not normally used by the filesystem. Instead, it is generally used
for assigning specific security labels for kernel-level enforcement (e.g. Mandatory Access
Control labels).

FAT12/16/32 (File Allocation Table 12-bit/16-bit/32-bit)

FAT12/16/32 is a DOS-based filesystem which is supported and used by 16-bit DOS
(FAT12/16) and all versions of Windows (16-bit supported FAT12/16 while 32 and 64-bit
versions support (FAT12/16/32) and 32-bit versions of DOS. These filesystems are natively
supported by Linux.

Files-11

Files-11 is the native filesystem of the OpenVMS operating system and is considered as the
progenitor of the NTFS filesystem. It is found on VAX, Alpha and Itanium OpenVMS-based
systems.

Filesystem

A filesystem is a term used for a series of disk (and virtual disk) attributes and metadata (e.g.
FAT, MFT, inodes, extents) which define how and where data is to be stored and distributed
across a given storage device or partition.

FUSE (Filesystem in Userspace)

FUSE is a Linux kernel module which enables non-system administrative users to mount
filesystems for which they normally would not have the authority. All FUSE code is run in
userspace. Modern Linux systems fully support FUSE.

HFS (Hierarchical File System)

HFS is the native filesystem of the Mac OS operating system. This filesystem is natively
supported by Linux.

HFS+ (Hierarchical File System/+)

HFS+ is the native filesystem of the Mac OS X operating system and supersedes HFS. This
filesystem is natively supported by Linux.

HPFS (High Performance File System)

HPFS is a filesystem native to IBM’s OS/2 operating system and supersedes the FAT
filesystem in use at the time. This filesystem is natively supported by Linux.

JFS (Journaled File System)

JFS is a high performance journaled filesystem native to IBM’s AIX UNIX platform. This
filesystem is natively supported by Linux.

108 DRDC Valcartier TM 2011-216

IDS (Intrusion Detection System).

An IDS system can be a hardware, software or hybrid system which scans a network, host
system or both for signs of access violations or malicious activity based on various detection
schemes including protocol scanning, trend analysis and base-lining differentiation and
signatures. IDS systems generally report their findings to a management system or console
and can be passive or active in nature.

Inode

An inode is a UNIX-based filesystem disk structure which stores information about a file or
other filesystem object (its metadata) but does not actually store the file itself. However,
inodes do contain the appropriate location or pointer to the file’s actual physical disk
location.

Linux

Linux is a free and open source software operating system based on UNIX. It was originally
conceived and developed (the kernel) by Linus Torvalds, who holds and maintains the
copyright to Linux. With the assistance of thousands of developers around the world, it has
turned into a robust, stable and secure operating system, not unlike its commercial UNIX-
based counterparts. Other than the kernel, it is mainly composed of developer-contributed
software.

MFT (Master File Table)

The MFT is the basis by which the NTFS filesystem keeps track of all its files and associated
metadata.

MINIX

MINIX is the native filesystem of the MINIX UNIX-like operating system developed by
Andrew Tanenbaum. This filesystem is natively supported by Linux.

NIDS (Network Intrusion Detection System)

A NIDS is an information system used to detect network anomalies which are likely to
indicate a network intrusion or network-related incident. These systems are available as both
hardware and software solutions although most are a combination of both.

NTFS (New Technology File System)

NTFS is a high performance journaling filesystem native to Windows NT and all subsequent
32 and 64-bit Windows operating systems. This filesystem is natively supported by Linux.
The NTFS filesystem largely resembles the OpenVMS ODS filesystem.

NTFS atime

NTFS (atime) is the date/time at which a file or directory was last accessed.

DRDC Valcartier TM 2011-216 109

NTFS ctime

NTFS (ctime) is the date/time at which a file or directory was created or copied or moved to
another filesystem. The act of copying or moving a file or directory to an altogether different
filesystem causes that file or directory’s crtime attribute to be set to the date/time of the copy
or move.

NTFS crtime

NTFS (crtime) is the date/time at which a file or directory’s MFT entries are modified,
specifically when either a file or directory’s MFT $DATA or $INDEX attribute is changed.

NTFS mtime

NTFS (mtime) is the date/time at which a file or directory is modified.

OpenVMS (Open Virtual Memory System)

OpenVMS is a high availability operating system designed to run on the DEC VAX, DEC
Alpha and Itanium computer systems. OpenVMS is the descendant of VMS, the native
operating system of the VAX.

Operating System

An operating system can be defined as a collection of binary executable code and system
configurations separated into individual computer files and that controls the computer’s
hardware, operating system behaviour and the user-based applications, tools and utilities. An
operating system is comprised of a kernel, a shell or GUI for interacting with the kernel and
launching applications and user-based applications.

POSIX (Portable Operating System Interface for UNIX)

POSIX is a set of IEEE standards used for specifying API, shell and utility interfaces for
maintaining a minimum level of compatibility between UNIX-like operating systems.

PTK

PTK is developed at DFLabs and is the premier open source GUI-based forensic suite. It uses
The SleuthKit as its base investigative system but also provides numerous additional
capabilities. A free version based on older PTK technology is available to the community for
no charge but the more recent version with the latest capabilities is a for a fee product.

QNX

QNX is a commercially-based UNIX-like real-time operating system designed and targeted
primarily at embedded device markets. QNX, in the context of this technical memorandum
also refers to the QNX filesystem, referred to as QNX.

Reiser4

Reiser4 is the successor of ReiserFS and fixes many of its limitations. It is also a journaled
filesystem. It is supported by Linux as a FUSE-based filesystem along with applied kernel
patches.

110 DRDC Valcartier TM 2011-216

ReiserFS (Reiser File System)

ReiserFS is a journaled all purpose filesystem developed by Hans Reiser. This filesystem is
natively supported by Linux.

RFS (ReiserFS or Reiser File System)

See ReiserFS.

ROMFS (Read-Only Memory File System)

ROMFS is a very simple ROM filesystem whose primarily use is to imprint code onto
integrated circuitry but can also be used by some systems to boot Linux kernels. This
filesystem is natively supported by Linux.

Shell

See Command Shell

SysV (System V)

SysV is a generic term applied to various 1980’s-era commercial System V UNIX-based
filesystems. This filesystem is natively supported by Linux.

TCT (The Coroner’s Toolkit)

TCT was written and developed by Dan Farmer, a former SGI employee and Wietse Venema,
an IBM employee. It is considered to be the first forensic software toolkit for UNIX-based
systems and is the predecessor of The SleuthKit.

The SleuthKit

The SleuthKit, based on TCT, is the premier open source forensic software investigative suite
upon which other successful frameworks, including PTK and Autopsy, use as their basis. The
SleuthKit is developed primarily by Brian Carrier and is under ongoing development.

TLN (TimeLiNe)

The TLN file format is an intermediate timeline format which is used as a mid-point between
a filesystem’s raw date/time metadata structures and a readable text-based timeline. It was
proposed by Harlan Carvey and now presents a viable alternative to the Bodyfile format.
However, it is far less complete than the Bodyfile intermediate format.

UDF (Universal Disk Format)

UDF is the native DVD filesystem and was designed to supersede CDFS. It suffers fewer
limitations than its predecessor (CDFS). This filesystem is natively supported by Linux.

UFS (UNIX File System)

UFS is a generic term meant to denote multiple similar filesystems including FFS, UFS1 and
UFS2 found on various UNIX and BSD operating system systems including HP and SUN
UNIX servers. Some versions of UFS support filesystem journaling. This filesystem is
natively supported by Linux.

DRDC Valcartier TM 2011-216 111

UNIX

UNIX is a multi-user, multitasking, multithreaded operating system based on a kernel that
provides a consistent interface to the user for both interactive and background job processing.
UNIX is multi-platform and hardware independent and it supports advanced APIs and system
calls. It is generally considered by the computing industry as the hallmark of scalable, robust,
secure and reliable computing. It was originally developed at AT&T Labs by Dennis Ritchie
and Ken Thompson, who were developing a more programmer-friendly operating system.

UMSDOS

UMSDOS is a native DOS-based Linux filesystem which allows both DOS and Linux to co-
exist on the same partition. This filesystem is natively supported by Linux.

UTC (Universal Time, Coordinated)

Universal Time, Coordinated or Coordinated Universal Time as it is more commonly referred
to is the international time standard. It is the most commonly used term for what once use to
be referred to as Greenwich Mean Time. Universal Time runs on a 24-hours clock where zero
(0) hours passes through Greenwich and runs eastward in time.

VxFS (Veritas File System)

VxFS is an advanced commercial UNIX-based filesystem supported on multiple platforms
and architectures. It is available on commercial-only basis for Linux.

Windows

Windows is a graphically-based operating system developed by Microsoft. It was first
introduced in 1985 and since that time, has undergone many changes and iterations. Now, it
is a multithreaded, multiprocessor, multitasking operating system and is also the most
popular desktop operating system currently in use worldwide. Due to its prevalence, it is also
the most heavily attacked operating system worldwide. Because the operating system must
cater to a very large variety of computing platforms and hardware peripherals, it lacks certain
security features found in more hardware-specific operating system implementations.
However, great strides have been made over the recent years to improve its security. Past
iterations have included Windows 3.x, 95, 98, NT, ME, 2000, XP, 2003 and Vista.

XENIX

XENIX is a native filesystem to the XENIX UNIX-based operating system of the late 1970s.
This filesystem is natively supported by Linux.

XFS (eXtended File System)

XFS is a high performance journaled file system native to SGI UNIX workstations, servers
and supercomputers. This filesystem is natively supported by Linux.

Xiafs

Xiafs is a native Linux filesystem developed by Frank Xia based largely on the MINIX
filesystem. This filesystem is natively supported by Linux.

112 DRDC Valcartier TM 2011-216

ZFS (Zettabyte File System)

ZFS is a highly advanced UNIX filesystem designed primarily for data redundancy and
reliability on multi-disk devices including RAID arrays and provides allocable storage pools.
It is supported by Linux as a FUSE-based filesystem. Rather than rely on extents and inodes
it is based on pointer block allocation.

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 2. SECURITY CLASSIFICATION
(Overall security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED
(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC JUNE 2010

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

Generating computer forensic super-timelines under Linux: A comprehensive guide for Windows-
based disk images

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Carbone, R.; Bean, C.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

October 2011

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

132

 6b. NO. OF REFS
(Total cited in document.)

84
 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Technical Memorandum

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence R&D Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 31XF20 « MOU RCMP "Live Forensics" »

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. ORIGINATOR’s DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Valcartier TM 2011-216

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

(U) This technical memorandum examines the basics surrounding computer forensic filesystem
timelines and provides an enhanced approach to generating superior timelines for improved
filesystem analysis and contextual awareness. Timelines are improved by polling multiple
sources of information across the filesystem resulting in an approach that is surprisingly flexible
and customizable. The timeline is further enhanced by incorporating key time-based metadata
found across a disk image which, when taken as a whole, increases the forensic investigator’s
understanding.

(U) Ce mémorandum technique examine les bases entourant la création d’un calendrier des
événements inforensiques des systèmes de fichier et fournit une approche améliorée pour
générer des calendriers supérieurs pour une analyse améliorée des systèmes de fichiers et un
meilleur éveil contextuel. Ces calendriers sont améliorés en sondant des sources multiples
d’information à travers le système de fichiers, ce qui résulte en une approche qui est
étonnamment flexible et configurable. Le calendrier est amélioré encore davantage par
l’introduction des métadonnées essentielles liées au temps qui se retrouvent un peu partout sur
un disque et qui, lorsque prises en compte globalement, augmentent la compréhension de
l’enquêteur inforensique.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing
terms which are Unclassified, the classification of each should be indicated as with the title.)

Bodyfile; Computer Forensics; Digital Forensics; File attributes; Forensic investigation;
Log2timeline; Mactime; Super-Timelines; The Sleuth Kit; Timeline analysis; Timeline
formats; TLN format

